pipeline_utils.py 103 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
import fnmatch
17
18
19
import importlib
import inspect
import os
20
import re
21
import sys
22
23
from dataclasses import dataclass
from pathlib import Path
24
from typing import Any, Callable, Dict, List, Optional, Union, get_args, get_origin
25
26

import numpy as np
Anh71me's avatar
Anh71me committed
27
import PIL.Image
28
import requests
29
import torch
30
from huggingface_hub import (
Marc Sun's avatar
Marc Sun committed
31
    DDUFEntry,
32
33
34
35
    ModelCard,
    create_repo,
    hf_hub_download,
    model_info,
Marc Sun's avatar
Marc Sun committed
36
    read_dduf_file,
37
38
    snapshot_download,
)
39
from huggingface_hub.utils import OfflineModeIsEnabled, validate_hf_hub_args
40
from packaging import version
41
from requests.exceptions import HTTPError
42
from tqdm.auto import tqdm
43
from typing_extensions import Self
44

45
from .. import __version__
46
from ..configuration_utils import ConfigMixin
47
48
from ..models import AutoencoderKL
from ..models.attention_processor import FusedAttnProcessor2_0
49
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, ModelMixin
50
from ..quantizers import PipelineQuantizationConfig
51
from ..quantizers.bitsandbytes.utils import _check_bnb_status
52
53
54
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
    CONFIG_NAME,
55
    DEPRECATED_REVISION_ARGS,
56
    BaseOutput,
57
    PushToHubMixin,
58
59
    _get_detailed_type,
    _is_valid_type,
60
    is_accelerate_available,
61
    is_accelerate_version,
62
    is_hpu_available,
Mengqing Cao's avatar
Mengqing Cao committed
63
    is_torch_npu_available,
64
    is_torch_version,
65
    is_transformers_version,
66
    logging,
Patrick von Platen's avatar
Patrick von Platen committed
67
    numpy_to_pil,
68
)
69
from ..utils.hub_utils import _check_legacy_sharding_variant_format, load_or_create_model_card, populate_model_card
70
from ..utils.torch_utils import empty_device_cache, get_device, is_compiled_module
Mengqing Cao's avatar
Mengqing Cao committed
71
72
73
74
75


if is_torch_npu_available():
    import torch_npu  # noqa: F401

76
77
78
79
80
from .pipeline_loading_utils import (
    ALL_IMPORTABLE_CLASSES,
    CONNECTED_PIPES_KEYS,
    CUSTOM_PIPELINE_FILE_NAME,
    LOADABLE_CLASSES,
Marc Sun's avatar
Marc Sun committed
81
    _download_dduf_file,
82
    _fetch_class_library_tuple,
83
    _get_custom_components_and_folders,
84
    _get_custom_pipeline_class,
85
    _get_final_device_map,
86
    _get_ignore_patterns,
87
    _get_pipeline_class,
88
    _identify_model_variants,
Marc Sun's avatar
Marc Sun committed
89
    _maybe_raise_error_for_incorrect_transformers,
90
    _maybe_raise_warning_for_inpainting,
91
    _maybe_warn_for_wrong_component_in_quant_config,
92
    _resolve_custom_pipeline_and_cls,
93
    _unwrap_model,
94
    _update_init_kwargs_with_connected_pipeline,
95
    filter_model_files,
96
97
98
99
100
    load_sub_model,
    maybe_raise_or_warn,
    variant_compatible_siblings,
    warn_deprecated_model_variant,
)
101
102


103
104
105
106
if is_accelerate_available():
    import accelerate


107
108
109
LIBRARIES = []
for library in LOADABLE_CLASSES:
    LIBRARIES.append(library)
110

111
112
SUPPORTED_DEVICE_MAP = ["balanced"]

113
114
115
116
117
118
119
120
121
122
logger = logging.get_logger(__name__)


@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
Steven Liu's avatar
Steven Liu committed
123
124
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
125
126
127
128
129
130
131
132
133
134
135
136
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
Steven Liu's avatar
Steven Liu committed
137
            List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
138
139
140
141
142
    """

    audios: np.ndarray


143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
class DeprecatedPipelineMixin:
    """
    A mixin that can be used to mark a pipeline as deprecated.

    Pipelines inheriting from this mixin will raise a warning when instantiated, indicating that they are deprecated
    and won't receive updates past the specified version. Tests will be skipped for pipelines that inherit from this
    mixin.

    Example usage:
    ```python
    class MyDeprecatedPipeline(DeprecatedPipelineMixin, DiffusionPipeline):
        _last_supported_version = "0.20.0"

        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
    ```
    """

    # Override this in the inheriting class to specify the last version that will support this pipeline
    _last_supported_version = None

    def __init__(self, *args, **kwargs):
        # Get the class name for the warning message
        class_name = self.__class__.__name__

        # Get the last supported version or use the current version if not specified
        version_info = getattr(self.__class__, "_last_supported_version", __version__)

        # Raise a warning that this pipeline is deprecated
        logger.warning(
            f"The {class_name} has been deprecated and will not receive bug fixes or feature updates after Diffusers version {version_info}. "
        )

        # Call the parent class's __init__ method
        super().__init__(*args, **kwargs)


180
class DiffusionPipeline(ConfigMixin, PushToHubMixin):
181
    r"""
Steven Liu's avatar
Steven Liu committed
182
    Base class for all pipelines.
183

Steven Liu's avatar
Steven Liu committed
184
185
    [`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
    provides methods for loading, downloading and saving models. It also includes methods to:
186
187

        - move all PyTorch modules to the device of your choice
188
        - enable/disable the progress bar for the denoising iteration
189
190
191

    Class attributes:

Steven Liu's avatar
Steven Liu committed
192
193
        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.
194
        - **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
Steven Liu's avatar
Steven Liu committed
195
          pipeline to function (should be overridden by subclasses).
196
    """
197

198
    config_name = "model_index.json"
199
    model_cpu_offload_seq = None
200
    hf_device_map = None
201
    _optional_components = []
202
    _exclude_from_cpu_offload = []
203
    _load_connected_pipes = False
204
    _is_onnx = False
205
206
207
208

    def register_modules(self, **kwargs):
        for name, module in kwargs.items():
            # retrieve library
209
            if module is None or isinstance(module, (tuple, list)) and module[0] is None:
210
211
                register_dict = {name: (None, None)}
            else:
212
                library, class_name = _fetch_class_library_tuple(module)
213
214
215
216
217
218
219
220
                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

221
    def __setattr__(self, name: str, value: Any):
222
        if name in self.__dict__ and hasattr(self.config, name):
223
224
            # We need to overwrite the config if name exists in config
            if isinstance(getattr(self.config, name), (tuple, list)):
225
                if value is not None and self.config[name][0] is not None:
226
                    class_library_tuple = _fetch_class_library_tuple(value)
227
228
229
230
231
232
233
234
235
                else:
                    class_library_tuple = (None, None)

                self.register_to_config(**{name: class_library_tuple})
            else:
                self.register_to_config(**{name: value})

        super().__setattr__(name, value)

236
237
238
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
239
        safe_serialization: bool = True,
240
        variant: Optional[str] = None,
241
        max_shard_size: Optional[Union[int, str]] = None,
242
243
        push_to_hub: bool = False,
        **kwargs,
244
245
    ):
        """
Steven Liu's avatar
Steven Liu committed
246
247
248
        Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
        class implements both a save and loading method. The pipeline is easily reloaded using the
        [`~DiffusionPipeline.from_pretrained`] class method.
249
250
251

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
252
                Directory to save a pipeline to. Will be created if it doesn't exist.
253
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
254
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
255
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
256
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
257
            max_shard_size (`int` or `str`, defaults to `None`):
258
259
260
261
262
263
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`).
                If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain
                period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`.
                This is to establish a common default size for this argument across different libraries in the Hugging
                Face ecosystem (`transformers`, and `accelerate`, for example).
264
265
266
267
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
Marc Sun's avatar
Marc Sun committed
268

269
270
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
271
272
        """
        model_index_dict = dict(self.config)
273
274
        model_index_dict.pop("_class_name", None)
        model_index_dict.pop("_diffusers_version", None)
275
        model_index_dict.pop("_module", None)
276
        model_index_dict.pop("_name_or_path", None)
277

278
279
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
280
            private = kwargs.pop("private", None)
281
282
283
284
285
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

286
287
288
289
290
291
292
293
294
295
296
297
298
299
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__

300
301
302
            # Dynamo wraps the original model in a private class.
            # I didn't find a public API to get the original class.
            if is_compiled_module(sub_model):
303
                sub_model = _unwrap_model(sub_model)
304
305
                model_cls = sub_model.__class__

306
307
308
            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
309
310
311
312
313
314
315
                if library_name in sys.modules:
                    library = importlib.import_module(library_name)
                else:
                    logger.info(
                        f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
                    )

316
317
318
319
320
321
322
323
324
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

325
            if save_method_name is None:
326
327
328
                logger.warning(
                    f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved."
                )
329
330
331
332
                # make sure that unsaveable components are not tried to be loaded afterward
                self.register_to_config(**{pipeline_component_name: (None, None)})
                continue

333
334
335
336
337
            save_method = getattr(sub_model, save_method_name)

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
338
            save_method_accept_variant = "variant" in save_method_signature.parameters
339
            save_method_accept_max_shard_size = "max_shard_size" in save_method_signature.parameters
340
341

            save_kwargs = {}
342
            if save_method_accept_safe:
343
344
345
                save_kwargs["safe_serialization"] = safe_serialization
            if save_method_accept_variant:
                save_kwargs["variant"] = variant
346
347
            if save_method_accept_max_shard_size and max_shard_size is not None:
                # max_shard_size is expected to not be None in ModelMixin
348
                save_kwargs["max_shard_size"] = max_shard_size
349
350

            save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
351

352
353
354
        # finally save the config
        self.save_config(save_directory)

355
        if push_to_hub:
356
357
358
359
360
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token, is_pipeline=True)
            model_card = populate_model_card(model_card)
            model_card.save(os.path.join(save_directory, "README.md"))

361
362
363
364
365
366
367
368
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

369
    def to(self, *args, **kwargs) -> Self:
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        r"""
        Performs Pipeline dtype and/or device conversion. A torch.dtype and torch.device are inferred from the
        arguments of `self.to(*args, **kwargs).`

        <Tip>

            If the pipeline already has the correct torch.dtype and torch.device, then it is returned as is. Otherwise,
            the returned pipeline is a copy of self with the desired torch.dtype and torch.device.

        </Tip>


        Here are the ways to call `to`:

        - `to(dtype, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
        - `to(device, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
        - `to(device=None, dtype=None, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the
          specified [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device) and
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)

        Arguments:
            dtype (`torch.dtype`, *optional*):
                Returns a pipeline with the specified
                [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
            device (`torch.Device`, *optional*):
                Returns a pipeline with the specified
                [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
            silence_dtype_warnings (`str`, *optional*, defaults to `False`):
                Whether to omit warnings if the target `dtype` is not compatible with the target `device`.

        Returns:
            [`DiffusionPipeline`]: The pipeline converted to specified `dtype` and/or `dtype`.
        """
405
406
        dtype = kwargs.pop("dtype", None)
        device = kwargs.pop("device", None)
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
        silence_dtype_warnings = kwargs.pop("silence_dtype_warnings", False)

        dtype_arg = None
        device_arg = None
        if len(args) == 1:
            if isinstance(args[0], torch.dtype):
                dtype_arg = args[0]
            else:
                device_arg = torch.device(args[0]) if args[0] is not None else None
        elif len(args) == 2:
            if isinstance(args[0], torch.dtype):
                raise ValueError(
                    "When passing two arguments, make sure the first corresponds to `device` and the second to `dtype`."
                )
            device_arg = torch.device(args[0]) if args[0] is not None else None
            dtype_arg = args[1]
        elif len(args) > 2:
            raise ValueError("Please make sure to pass at most two arguments (`device` and `dtype`) `.to(...)`")

        if dtype is not None and dtype_arg is not None:
            raise ValueError(
                "You have passed `dtype` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        dtype = dtype or dtype_arg

        if device is not None and device_arg is not None:
            raise ValueError(
                "You have passed `device` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        device = device or device_arg
Aryan's avatar
Aryan committed
439
        device_type = torch.device(device).type if device is not None else None
440
        pipeline_has_bnb = any(any((_check_bnb_status(module))) for _, module in self.components.items())
441

442
443
444
445
446
        # throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
        def module_is_sequentially_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
                return False

447
448
449
450
451
            _, _, is_loaded_in_8bit_bnb = _check_bnb_status(module)

            if is_loaded_in_8bit_bnb:
                return False

452
453
454
455
456
            return hasattr(module, "_hf_hook") and (
                isinstance(module._hf_hook, accelerate.hooks.AlignDevicesHook)
                or hasattr(module._hf_hook, "hooks")
                and isinstance(module._hf_hook.hooks[0], accelerate.hooks.AlignDevicesHook)
            )
457
458
459
460
461
462
463
464
465
466
467

        def module_is_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
                return False

            return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)

        # .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
        pipeline_is_sequentially_offloaded = any(
            module_is_sequentially_offloaded(module) for _, module in self.components.items()
        )
468
469
470
471
472
473
474

        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline which doesn't allow explicit device placement using `to()`. You can call `reset_device_map()` to remove the existing device map from the pipeline."
            )

475
        if device_type in ["cuda", "xpu"]:
476
477
478
479
480
481
482
483
484
            if pipeline_is_sequentially_offloaded and not pipeline_has_bnb:
                raise ValueError(
                    "It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
                )
            # PR: https://github.com/huggingface/accelerate/pull/3223/
            elif pipeline_has_bnb and is_accelerate_version("<", "1.1.0.dev0"):
                raise ValueError(
                    "You are trying to call `.to('cuda')` on a pipeline that has models quantized with `bitsandbytes`. Your current `accelerate` installation does not support it. Please upgrade the installation."
                )
485
486
487

        # Display a warning in this case (the operation succeeds but the benefits are lost)
        pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
488
        if pipeline_is_offloaded and device_type in ["cuda", "xpu"]:
489
490
491
492
            logger.warning(
                f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
            )

493
494
495
496
497
498
499
500
501
502
503
504
505
506
        # Enable generic support for Intel Gaudi accelerator using GPU/HPU migration
        if device_type == "hpu" and kwargs.pop("hpu_migration", True) and is_hpu_available():
            os.environ["PT_HPU_GPU_MIGRATION"] = "1"
            logger.debug("Environment variable set: PT_HPU_GPU_MIGRATION=1")

            import habana_frameworks.torch  # noqa: F401

            # HPU hardware check
            if not (hasattr(torch, "hpu") and torch.hpu.is_available()):
                raise ValueError("You are trying to call `.to('hpu')` but HPU device is unavailable.")

            os.environ["PT_HPU_MAX_COMPOUND_OP_SIZE"] = "1"
            logger.debug("Environment variable set: PT_HPU_MAX_COMPOUND_OP_SIZE=1")

507
        module_names, _ = self._get_signature_keys(self)
508
509
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
510

511
        is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
512
        for module in modules:
513
            _, is_loaded_in_4bit_bnb, is_loaded_in_8bit_bnb = _check_bnb_status(module)
Aryan's avatar
Aryan committed
514
            is_group_offloaded = self._maybe_raise_error_if_group_offload_active(module=module)
Patrick von Platen's avatar
Patrick von Platen committed
515

516
            if (is_loaded_in_4bit_bnb or is_loaded_in_8bit_bnb) and dtype is not None:
Patrick von Platen's avatar
Patrick von Platen committed
517
                logger.warning(
518
                    f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` {'4bit' if is_loaded_in_4bit_bnb else '8bit'} and conversion to {dtype} is not supported. Module is still in {'4bit' if is_loaded_in_4bit_bnb else '8bit'} precision."
Patrick von Platen's avatar
Patrick von Platen committed
519
520
                )

521
            if is_loaded_in_8bit_bnb and device is not None:
Patrick von Platen's avatar
Patrick von Platen committed
522
                logger.warning(
523
                    f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` 8bit and moving it to {device} via `.to()` is not supported. Module is still on {module.device}."
Patrick von Platen's avatar
Patrick von Platen committed
524
                )
525

Aryan's avatar
Aryan committed
526
527
528
529
530
531
532
533
534
535
            # Note: we also handle this at the ModelMixin level. The reason for doing it here too is that modeling
            # components can be from outside diffusers too, but still have group offloading enabled.
            if (
                self._maybe_raise_error_if_group_offload_active(raise_error=False, module=module)
                and device is not None
            ):
                logger.warning(
                    f"The module '{module.__class__.__name__}' is group offloaded and moving it to {device} via `.to()` is not supported."
                )

536
537
538
539
            # This can happen for `transformer` models. CPU placement was added in
            # https://github.com/huggingface/transformers/pull/33122. So, we guard this accordingly.
            if is_loaded_in_4bit_bnb and device is not None and is_transformers_version(">", "4.44.0"):
                module.to(device=device)
Aryan's avatar
Aryan committed
540
            elif not is_loaded_in_4bit_bnb and not is_loaded_in_8bit_bnb and not is_group_offloaded:
541
                module.to(device, dtype)
Patrick von Platen's avatar
Patrick von Platen committed
542

543
544
            if (
                module.dtype == torch.float16
545
                and str(device) in ["cpu"]
546
547
548
549
                and not silence_dtype_warnings
                and not is_offloaded
            ):
                logger.warning(
550
                    "Pipelines loaded with `dtype=torch.float16` cannot run with `cpu` device. It"
551
552
553
554
555
                    " is not recommended to move them to `cpu` as running them will fail. Please make"
                    " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                    " support for`float16` operations on this device in PyTorch. Please, remove the"
                    " `torch_dtype=torch.float16` argument, or use another device for inference."
                )
556
557
558
559
560
561
562
563
        return self

    @property
    def device(self) -> torch.device:
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
564
        module_names, _ = self._get_signature_keys(self)
565
566
567
568
569
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.device
570

571
572
        return torch.device("cpu")

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
    @property
    def dtype(self) -> torch.dtype:
        r"""
        Returns:
            `torch.dtype`: The torch dtype on which the pipeline is located.
        """
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.dtype

        return torch.float32

588
    @classmethod
589
    @validate_hf_hub_args
590
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs) -> Self:
591
        r"""
Steven Liu's avatar
Steven Liu committed
592
        Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
593

Steven Liu's avatar
Steven Liu committed
594
        The pipeline is set in evaluation mode (`model.eval()`) by default.
595

Steven Liu's avatar
Steven Liu committed
596
        If you get the error message below, you need to finetune the weights for your downstream task:
597

Steven Liu's avatar
Steven Liu committed
598
        ```
599
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
Steven Liu's avatar
Steven Liu committed
600
601
602
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
603
604
605
606
607

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
608
609
610
611
612
                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
Marc Sun's avatar
Marc Sun committed
613
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing a dduf file
614
615
616
617
618
619
            torch_dtype (`torch.dtype` or `dict[str, Union[str, torch.dtype]]`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. To load submodels with
                different dtype pass a `dict` (for example `{'transformer': torch.bfloat16, 'vae': torch.float16}`).
                Set the default dtype for unspecified components with `default` (for example `{'transformer':
                torch.bfloat16, 'default': torch.float16}`). If a component is not specified and no default is set,
                `torch.float32` is used.
620
621
622
623
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
624
                🧪 This is an experimental feature and may change in the future.
625
626
627
628
629

                </Tip>

                Can be either:

Steven Liu's avatar
Steven Liu committed
630
631
632
                    - A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
                      pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
                      the custom pipeline.
633
                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
634
635
636
637
638
639
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current main branch of GitHub.
                    - A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
640
641
642
643
644
645
646

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
647
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
648
649
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
650

651
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
652
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
653
654
655
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
656
657
658
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
659
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
660
661
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
662
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
663
664
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
665
            custom_revision (`str`, *optional*):
666
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
667
668
                `revision` when loading a custom pipeline from the Hub. Defaults to the latest stable 🤗 Diffusers
                version.
669
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
670
671
672
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
673
674
675
676
677
            device_map (`str`, *optional*):
                Strategy that dictates how the different components of a pipeline should be placed on available
                devices. Currently, only "balanced" `device_map` is supported. Check out
                [this](https://huggingface.co/docs/diffusers/main/en/tutorials/inference_with_big_models#device-placement)
                to know more.
678
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
679
680
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
681
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
682
                The path to offload weights if device_map contains the value `"disk"`.
683
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
684
685
686
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
687
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
688
689
690
691
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
692
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
693
694
695
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
696
697
698
699
700
            use_onnx (`bool`, *optional*, defaults to `None`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
701
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
702
703
704
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
705
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
706
707
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
Marc Sun's avatar
Marc Sun committed
708
709
            dduf_file(`str`, *optional*):
                Load weights from the specified dduf file.
710
711
712

        <Tip>

713
714
        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `hf
        auth login`.
715
716
717
718
719
720
721
722
723
724
725
726
727
728

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
729
        >>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
730
731
732
733
734
735
736
737

        >>> # Use a different scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
738
739
740
        # Copy the kwargs to re-use during loading connected pipeline.
        kwargs_copied = kwargs.copy()

741
        cache_dir = kwargs.pop("cache_dir", None)
742
743
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
744
745
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
746
        revision = kwargs.pop("revision", None)
747
        from_flax = kwargs.pop("from_flax", False)
748
        torch_dtype = kwargs.pop("torch_dtype", None)
749
750
751
752
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
753
        provider_options = kwargs.pop("provider_options", None)
754
        device_map = kwargs.pop("device_map", None)
755
756
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
757
        offload_state_dict = kwargs.pop("offload_state_dict", None)
758
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
759
        variant = kwargs.pop("variant", None)
Marc Sun's avatar
Marc Sun committed
760
        dduf_file = kwargs.pop("dduf_file", None)
761
        use_safetensors = kwargs.pop("use_safetensors", None)
762
        use_onnx = kwargs.pop("use_onnx", None)
763
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
764
        quantization_config = kwargs.pop("quantization_config", None)
765

766
        if torch_dtype is not None and not isinstance(torch_dtype, dict) and not isinstance(torch_dtype, torch.dtype):
767
768
769
770
771
            torch_dtype = torch.float32
            logger.warning(
                f"Passed `torch_dtype` {torch_dtype} is not a `torch.dtype`. Defaulting to `torch.float32`."
            )

772
773
774
775
776
777
778
779
780
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

781
782
783
        if quantization_config is not None and not isinstance(quantization_config, PipelineQuantizationConfig):
            raise ValueError("`quantization_config` must be an instance of `PipelineQuantizationConfig`.")

784
785
786
787
788
789
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

790
791
792
793
794
795
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

796
        if device_map is not None and not is_accelerate_available():
797
            raise NotImplementedError(
798
799
800
801
802
803
804
805
806
                "Using `device_map` requires the `accelerate` library. Please install it using: `pip install accelerate`."
            )

        if device_map is not None and not isinstance(device_map, str):
            raise ValueError("`device_map` must be a string.")

        if device_map is not None and device_map not in SUPPORTED_DEVICE_MAP:
            raise NotImplementedError(
                f"{device_map} not supported. Supported strategies are: {', '.join(SUPPORTED_DEVICE_MAP)}"
807
808
            )

809
810
811
812
        if device_map is not None and device_map in SUPPORTED_DEVICE_MAP:
            if is_accelerate_version("<", "0.28.0"):
                raise NotImplementedError("Device placement requires `accelerate` version `0.28.0` or later.")

813
814
815
816
817
818
        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

Marc Sun's avatar
Marc Sun committed
819
820
821
822
823
824
        if dduf_file:
            if custom_pipeline:
                raise NotImplementedError("Custom pipelines are not supported with DDUF at the moment.")
            if load_connected_pipeline:
                raise NotImplementedError("Connected pipelines are not supported with DDUF at the moment.")

825
826
827
        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
Patrick von Platen's avatar
Patrick von Platen committed
828
829
830
831
832
            if pretrained_model_name_or_path.count("/") > 1:
                raise ValueError(
                    f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}"'
                    " is neither a valid local path nor a valid repo id. Please check the parameter."
                )
833
            cached_folder = cls.download(
834
835
836
837
838
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
839
                token=token,
840
                revision=revision,
841
                from_flax=from_flax,
842
                use_safetensors=use_safetensors,
843
                use_onnx=use_onnx,
844
                custom_pipeline=custom_pipeline,
845
                custom_revision=custom_revision,
846
                variant=variant,
Marc Sun's avatar
Marc Sun committed
847
                dduf_file=dduf_file,
848
                load_connected_pipeline=load_connected_pipeline,
849
                **kwargs,
850
851
852
853
            )
        else:
            cached_folder = pretrained_model_name_or_path

854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
        # The variant filenames can have the legacy sharding checkpoint format that we check and throw
        # a warning if detected.
        if variant is not None and _check_legacy_sharding_variant_format(folder=cached_folder, variant=variant):
            warn_msg = (
                f"Warning: The repository contains sharded checkpoints for variant '{variant}' maybe in a deprecated format. "
                "Please check your files carefully:\n\n"
                "- Correct format example: diffusion_pytorch_model.fp16-00003-of-00003.safetensors\n"
                "- Deprecated format example: diffusion_pytorch_model-00001-of-00002.fp16.safetensors\n\n"
                "If you find any files in the deprecated format:\n"
                "1. Remove all existing checkpoint files for this variant.\n"
                "2. Re-obtain the correct files by running `save_pretrained()`.\n\n"
                "This will ensure you're using the most up-to-date and compatible checkpoint format."
            )
            logger.warning(warn_msg)

Marc Sun's avatar
Marc Sun committed
869
870
871
872
873
874
875
876
877
878
879
        dduf_entries = None
        if dduf_file:
            dduf_file_path = os.path.join(cached_folder, dduf_file)
            dduf_entries = read_dduf_file(dduf_file_path)
            # The reader contains already all the files needed, no need to check it again
            cached_folder = ""

        config_dict = cls.load_config(cached_folder, dduf_entries=dduf_entries)

        if dduf_file:
            _maybe_raise_error_for_incorrect_transformers(config_dict)
880

Patrick von Platen's avatar
Patrick von Platen committed
881
882
883
        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

884
        # 2. Define which model components should load variants
885
886
887
888
        # We retrieve the information by matching whether variant model checkpoints exist in the subfolders.
        # Example: `diffusion_pytorch_model.safetensors` -> `diffusion_pytorch_model.fp16.safetensors`
        # with variant being `"fp16"`.
        model_variants = _identify_model_variants(folder=cached_folder, variant=variant, config=config_dict)
889
890
891
        if len(model_variants) == 0 and variant is not None:
            error_message = f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
            raise ValueError(error_message)
892

893
        # 3. Load the pipeline class, if using custom module then load it from the hub
894
        # if we load from explicit class, let's use it
895
896
897
        custom_pipeline, custom_class_name = _resolve_custom_pipeline_and_cls(
            folder=cached_folder, config=config_dict, custom_pipeline=custom_pipeline
        )
898
        pipeline_class = _get_pipeline_class(
899
            cls,
900
            config=config_dict,
901
902
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
903
            class_name=custom_class_name,
904
905
            cache_dir=cache_dir,
            revision=custom_revision,
906
        )
907

908
909
910
        if device_map is not None and pipeline_class._load_connected_pipes:
            raise NotImplementedError("`device_map` is not yet supported for connected pipelines.")

911
        # DEPRECATED: To be removed in 1.0.0
912
913
914
915
916
917
918
        # we are deprecating the `StableDiffusionInpaintPipelineLegacy` pipeline which gets loaded
        # when a user requests for a `StableDiffusionInpaintPipeline` with `diffusers` version being <= 0.5.1.
        _maybe_raise_warning_for_inpainting(
            pipeline_class=pipeline_class,
            pretrained_model_name_or_path=pretrained_model_name_or_path,
            config=config_dict,
        )
919

920
921
922
        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

923
924
925
926
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
927
        expected_types = pipeline_class._get_signature_types()
928
929
930
931
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

932
933
934
935
936
937
        # define init kwargs and make sure that optional component modules are filtered out
        init_kwargs = {
            k: init_dict.pop(k)
            for k in optional_kwargs
            if k in init_dict and k not in pipeline_class._optional_components
        }
938
939
940
941
942
943
944
945
946
947
948
949
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

950
951
952
953
954
955
956
957
        # Special case: safety_checker must be loaded separately when using `from_flax`
        if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
            raise NotImplementedError(
                "The safety checker cannot be automatically loaded when loading weights `from_flax`."
                " Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
                " separately if you need it."
            )

958
        # 5. Throw nice warnings / errors for fast accelerate loading
959
960
961
962
963
964
965
966
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        # import it here to avoid circular import
        from diffusers import pipelines

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
        # 6. device map delegation
        final_device_map = None
        if device_map is not None:
            final_device_map = _get_final_device_map(
                device_map=device_map,
                pipeline_class=pipeline_class,
                passed_class_obj=passed_class_obj,
                init_dict=init_dict,
                library=library,
                max_memory=max_memory,
                torch_dtype=torch_dtype,
                cached_folder=cached_folder,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )

        # 7. Load each module in the pipeline
        current_device_map = None
988
        _maybe_warn_for_wrong_component_in_quant_config(init_dict, quantization_config)
989
        for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
990
            # 7.1 device_map shenanigans
991
992
993
994
995
996
997
            if final_device_map is not None and len(final_device_map) > 0:
                component_device = final_device_map.get(name, None)
                if component_device is not None:
                    current_device_map = {"": component_device}
                else:
                    current_device_map = None

998
            # 7.2 - now that JAX/Flax is an official framework of the library, we might load from Flax names
999
            class_name = class_name[4:] if class_name.startswith("Flax") else class_name
1000

1001
            # 7.3 Define all importable classes
1002
            is_pipeline_module = hasattr(pipelines, library_name)
1003
            importable_classes = ALL_IMPORTABLE_CLASSES
1004
1005
            loaded_sub_model = None

1006
            # 7.4 Use passed sub model or load class_name from library_name
1007
            if name in passed_class_obj:
1008
1009
1010
1011
1012
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )
1013
1014
1015

                loaded_sub_model = passed_class_obj[name]
            else:
1016
                # load sub model
1017
1018
1019
1020
1021
                sub_model_dtype = (
                    torch_dtype.get(name, torch_dtype.get("default", torch.float32))
                    if isinstance(torch_dtype, dict)
                    else torch_dtype
                )
1022
1023
1024
1025
1026
1027
1028
                loaded_sub_model = load_sub_model(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
1029
                    torch_dtype=sub_model_dtype,
1030
1031
                    provider=provider,
                    sess_options=sess_options,
1032
                    device_map=current_device_map,
1033
1034
1035
                    max_memory=max_memory,
                    offload_folder=offload_folder,
                    offload_state_dict=offload_state_dict,
1036
1037
1038
1039
1040
1041
                    model_variants=model_variants,
                    name=name,
                    from_flax=from_flax,
                    variant=variant,
                    low_cpu_mem_usage=low_cpu_mem_usage,
                    cached_folder=cached_folder,
1042
                    use_safetensors=use_safetensors,
Marc Sun's avatar
Marc Sun committed
1043
                    dduf_entries=dduf_entries,
1044
                    provider_options=provider_options,
1045
                    quantization_config=quantization_config,
1046
                )
1047
1048
1049
                logger.info(
                    f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
                )
1050
1051
1052

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

1053
        # 8. Handle connected pipelines.
1054
        if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
1055
1056
1057
1058
1059
1060
1061
            init_kwargs = _update_init_kwargs_with_connected_pipeline(
                init_kwargs=init_kwargs,
                passed_pipe_kwargs=passed_pipe_kwargs,
                passed_class_objs=passed_class_obj,
                folder=cached_folder,
                **kwargs_copied,
            )
1062

1063
        # 9. Potentially add passed objects if expected
1064
1065
1066
1067
1068
1069
1070
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
1071
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - set(optional_kwargs)
1072
1073
1074
1075
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
        # 10. Type checking init arguments
        for kw, arg in init_kwargs.items():
            # Too complex to validate with type annotation alone
            if "scheduler" in kw:
                continue
            # Many tokenizer annotations don't include its "Fast" variant, so skip this
            # e.g T5Tokenizer but not T5TokenizerFast
            elif "tokenizer" in kw:
                continue
            elif (
                arg is not None  # Skip if None
                and not expected_types[kw] == (inspect.Signature.empty,)  # Skip if no type annotations
                and not _is_valid_type(arg, expected_types[kw])  # Check type
            ):
                logger.warning(f"Expected types for {kw}: {expected_types[kw]}, got {_get_detailed_type(arg)}.")

        # 11. Instantiate the pipeline
1093
        model = pipeline_class(**init_kwargs)
1094

1095
        # 12. Save where the model was instantiated from
1096
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1097
1098
        if device_map is not None:
            setattr(model, "hf_device_map", final_device_map)
1099
1100
        if quantization_config is not None:
            setattr(model, "quantization_config", quantization_config)
1101
1102
        return model

1103
1104
1105
1106
    @property
    def name_or_path(self) -> str:
        return getattr(self.config, "_name_or_path", None)

1107
1108
1109
1110
1111
1112
1113
    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        [`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
        Accelerate's module hooks.
        """
Aryan's avatar
Aryan committed
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
        from ..hooks.group_offloading import _get_group_onload_device

        # When apply group offloading at the leaf_level, we're in the same situation as accelerate's sequential
        # offloading. We need to return the onload device of the group offloading hooks so that the intermediates
        # required for computation (latents, prompt embeddings, etc.) can be created on the correct device.
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue
            try:
                return _get_group_onload_device(model)
            except ValueError:
                pass

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
                continue

            if not hasattr(model, "_hf_hook"):
                return self.device
            for module in model.modules():
                if (
                    hasattr(module, "_hf_hook")
                    and hasattr(module._hf_hook, "execution_device")
                    and module._hf_hook.execution_device is not None
                ):
                    return torch.device(module._hf_hook.execution_device)
        return self.device

1142
1143
1144
1145
1146
1147
    def remove_all_hooks(self):
        r"""
        Removes all hooks that were added when using `enable_sequential_cpu_offload` or `enable_model_cpu_offload`.
        """
        for _, model in self.components.items():
            if isinstance(model, torch.nn.Module) and hasattr(model, "_hf_hook"):
1148
                accelerate.hooks.remove_hook_from_module(model, recurse=True)
1149
1150
        self._all_hooks = []

1151
    def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = None):
1152
1153
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
1154
1155
1156
1157
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the accelerator when its
        `forward` method is called, and the model remains in accelerator until the next model runs. Memory savings are
        lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution
        of the `unet`.
1158
1159
1160
1161

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
1162
            device (`torch.Device` or `str`, *optional*, defaults to None):
1163
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
1164
                automatically detect the available accelerator and use.
1165
        """
Aryan's avatar
Aryan committed
1166
1167
        self._maybe_raise_error_if_group_offload_active(raise_error=True)

1168
1169
1170
1171
1172
1173
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_model_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_model_cpu_offload()`."
            )

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
        if self.model_cpu_offload_seq is None:
            raise ValueError(
                "Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set."
            )

        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

1184
1185
        self.remove_all_hooks()

1186
1187
1188
1189
1190
        if device is None:
            device = get_device()
            if device == "cpu":
                raise RuntimeError("`enable_model_cpu_offload` requires accelerator, but not found")

1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1201
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1202
1203
1204

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1205
        self._offload_device = device
1206

1207
        self.to("cpu", silence_dtype_warnings=True)
1208
        empty_device_cache(device.type)
1209
1210
1211

        all_model_components = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}

1212
        self._all_hooks = []
1213
1214
        hook = None
        for model_str in self.model_cpu_offload_seq.split("->"):
1215
            model = all_model_components.pop(model_str, None)
1216

1217
1218
1219
            if not isinstance(model, torch.nn.Module):
                continue

1220
1221
1222
1223
1224
1225
1226
1227
            # This is because the model would already be placed on a CUDA device.
            _, _, is_loaded_in_8bit_bnb = _check_bnb_status(model)
            if is_loaded_in_8bit_bnb:
                logger.info(
                    f"Skipping the hook placement for the {model.__class__.__name__} as it is loaded in `bitsandbytes` 8bit."
                )
                continue

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
            _, hook = cpu_offload_with_hook(model, device, prev_module_hook=hook)
            self._all_hooks.append(hook)

        # CPU offload models that are not in the seq chain unless they are explicitly excluded
        # these models will stay on CPU until maybe_free_model_hooks is called
        # some models cannot be in the seq chain because they are iteratively called, such as controlnet
        for name, model in all_model_components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                _, hook = cpu_offload_with_hook(model, device)
                self._all_hooks.append(hook)

    def maybe_free_model_hooks(self):
        r"""
1246
1247
1248
1249
1250
1251
1252
1253
1254
        Method that performs the following:
        - Offloads all components.
        - Removes all model hooks that were added when using `enable_model_cpu_offload`, and then applies them again.
          In case the model has not been offloaded, this function is a no-op.
        - Resets stateful diffusers hooks of denoiser components if they were added with
          [`~hooks.HookRegistry.register_hook`].

        Make sure to add this function to the end of the `__call__` function of your pipeline so that it functions
        correctly when applying `enable_model_cpu_offload`.
1255
        """
1256
1257
1258
1259
        for component in self.components.values():
            if hasattr(component, "_reset_stateful_cache"):
                component._reset_stateful_cache()

1260
1261
1262
1263
1264
        if not hasattr(self, "_all_hooks") or len(self._all_hooks) == 0:
            # `enable_model_cpu_offload` has not be called, so silently do nothing
            return

        # make sure the model is in the same state as before calling it
1265
        self.enable_model_cpu_offload(device=getattr(self, "_offload_device", "cuda"))
1266

1267
    def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = None):
1268
        r"""
1269
1270
        Offloads all models to CPU using 🤗 Accelerate, significantly reducing memory usage. When called, the state
        dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
1271
1272
        and then moved to `torch.device('meta')` and loaded to accelerator only when their specific submodule has its
        `forward` method called. Offloading happens on a submodule basis. Memory savings are higher than with
1273
        `enable_model_cpu_offload`, but performance is lower.
1274
1275
1276
1277

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
1278
            device (`torch.Device` or `str`, *optional*, defaults to None):
1279
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
1280
                automatically detect the available accelerator and use.
1281
        """
Aryan's avatar
Aryan committed
1282
1283
        self._maybe_raise_error_if_group_offload_active(raise_error=True)

1284
1285
1286
1287
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
1288
        self.remove_all_hooks()
1289

1290
1291
1292
1293
1294
1295
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_sequential_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_sequential_cpu_offload()`."
            )

1296
1297
1298
1299
1300
        if device is None:
            device = get_device()
            if device == "cpu":
                raise RuntimeError("`enable_sequential_cpu_offload` requires accelerator, but not found")

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1311
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1312
1313
1314

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1315
        self._offload_device = device
1316
1317

        if self.device.type != "cpu":
1318
            orig_device_type = self.device.type
1319
            self.to("cpu", silence_dtype_warnings=True)
1320
            empty_device_cache(orig_device_type)
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                # make sure to offload buffers if not all high level weights
                # are of type nn.Module
                offload_buffers = len(model._parameters) > 0
                cpu_offload(model, device, offload_buffers=offload_buffers)

1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
    def reset_device_map(self):
        r"""
        Resets the device maps (if any) to None.
        """
        if self.hf_device_map is None:
            return
        else:
            self.remove_all_hooks()
            for name, component in self.components.items():
                if isinstance(component, torch.nn.Module):
                    component.to("cpu")
            self.hf_device_map = None

1347
    @classmethod
1348
    @validate_hf_hub_args
1349
1350
    def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
        r"""
Steven Liu's avatar
Steven Liu committed
1351
        Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
1352
1353

        Parameters:
Steven Liu's avatar
Steven Liu committed
1354
            pretrained_model_name (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
1355
                A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
Steven Liu's avatar
Steven Liu committed
1356
                hosted on the Hub.
1357
1358
1359
            custom_pipeline (`str`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1360
                    - A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
Steven Liu's avatar
Steven Liu committed
1361
1362
                      pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                      the custom pipeline.
1363
1364

                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
1365
1366
1367
1368
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current `main` branch of GitHub.
1369

Steven Liu's avatar
Steven Liu committed
1370
1371
                    - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
1372

Steven Liu's avatar
Steven Liu committed
1373
                <Tip warning={true}>
1374

Steven Liu's avatar
Steven Liu committed
1375
                🧪 This is an experimental feature and may change in the future.
1376

Steven Liu's avatar
Steven Liu committed
1377
                </Tip>
1378

Steven Liu's avatar
Steven Liu committed
1379
1380
                For more information on how to load and create custom pipelines, take a look at [How to contribute a
                community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
1381
1382
1383
1384

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
1385

1386
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1387
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1388
1389
1390
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
1391
1392
1393
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1394
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1395
1396
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1397
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1398
1399
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
Steven Liu's avatar
Steven Liu committed
1400
            custom_revision (`str`, *optional*, defaults to `"main"`):
1401
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
1402
1403
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
1404
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1405
1406
1407
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1408
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1409
1410
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
Marc Sun's avatar
Marc Sun committed
1411
1412
            dduf_file(`str`, *optional*):
                Load weights from the specified DDUF file.
1413
1414
1415
1416
1417
1418
1419
1420
1421
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            use_onnx (`bool`, *optional*, defaults to `False`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
1422
1423
1424
1425
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom pipelines and components defined on the Hub in their own files. This
                option should only be set to `True` for repositories you trust and in which you have read the code, as
                it will execute code present on the Hub on your local machine.
Steven Liu's avatar
Steven Liu committed
1426
1427
1428
1429

        Returns:
            `os.PathLike`:
                A path to the downloaded pipeline.
1430
1431
1432

        <Tip>

1433
1434
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with `hf
        auth login
1435
1436
1437
1438

        </Tip>

        """
1439
        cache_dir = kwargs.pop("cache_dir", None)
1440
1441
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
1442
1443
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
1444
1445
1446
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
1447
        custom_revision = kwargs.pop("custom_revision", None)
1448
        variant = kwargs.pop("variant", None)
1449
        use_safetensors = kwargs.pop("use_safetensors", None)
1450
        use_onnx = kwargs.pop("use_onnx", None)
1451
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1452
        trust_remote_code = kwargs.pop("trust_remote_code", False)
Marc Sun's avatar
Marc Sun committed
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
        dduf_file: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_file", None)

        if dduf_file:
            if custom_pipeline:
                raise NotImplementedError("Custom pipelines are not supported with DDUF at the moment.")
            if load_connected_pipeline:
                raise NotImplementedError("Connected pipelines are not supported with DDUF at the moment.")
            return _download_dduf_file(
                pretrained_model_name=pretrained_model_name,
                dduf_file=dduf_file,
                pipeline_class_name=cls.__name__,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )
1470

1471
1472
        allow_pickle = True if (use_safetensors is None or use_safetensors is False) else False
        use_safetensors = use_safetensors if use_safetensors is not None else True
1473
1474
1475
1476

        allow_patterns = None
        ignore_patterns = None

1477
        model_info_call_error: Optional[Exception] = None
1478
1479
        if not local_files_only:
            try:
1480
                info = model_info(pretrained_model_name, token=token, revision=revision)
1481
            except (HTTPError, OfflineModeIsEnabled, requests.ConnectionError) as e:
1482
                logger.warning(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
1483
                local_files_only = True
1484
                model_info_call_error = e  # save error to reraise it if model is not cached locally
1485

1486
        if not local_files_only:
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
            config_file = hf_hub_download(
                pretrained_model_name,
                cls.config_name,
                cache_dir=cache_dir,
                revision=revision,
                proxies=proxies,
                force_download=force_download,
                token=token,
            )
            config_dict = cls._dict_from_json_file(config_file)
            ignore_filenames = config_dict.pop("_ignore_files", [])

1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
            filenames = {sibling.rfilename for sibling in info.siblings}
            if variant is not None and _check_legacy_sharding_variant_format(filenames=filenames, variant=variant):
                warn_msg = (
                    f"Warning: The repository contains sharded checkpoints for variant '{variant}' maybe in a deprecated format. "
                    "Please check your files carefully:\n\n"
                    "- Correct format example: diffusion_pytorch_model.fp16-00003-of-00003.safetensors\n"
                    "- Deprecated format example: diffusion_pytorch_model-00001-of-00002.fp16.safetensors\n\n"
                    "If you find any files in the deprecated format:\n"
                    "1. Remove all existing checkpoint files for this variant.\n"
                    "2. Re-obtain the correct files by running `save_pretrained()`.\n\n"
                    "This will ensure you're using the most up-to-date and compatible checkpoint format."
                )
                logger.warning(warn_msg)

1513
            filenames = set(filenames) - set(ignore_filenames)
1514
1515
            if revision in DEPRECATED_REVISION_ARGS and version.parse(
                version.parse(__version__).base_version
Patrick von Platen's avatar
Patrick von Platen committed
1516
            ) >= version.parse("0.22.0"):
1517
                warn_deprecated_model_variant(pretrained_model_name, token, variant, revision, filenames)
1518

1519
            custom_components, folder_names = _get_custom_components_and_folders(
1520
                pretrained_model_name, config_dict, filenames, variant
1521
            )
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
            custom_class_name = None
            if custom_pipeline is None and isinstance(config_dict["_class_name"], (list, tuple)):
                custom_pipeline = config_dict["_class_name"][0]
                custom_class_name = config_dict["_class_name"][1]

            load_pipe_from_hub = custom_pipeline is not None and f"{custom_pipeline}.py" in filenames
            load_components_from_hub = len(custom_components) > 0

            if load_pipe_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {custom_pipeline}.py which must be executed to correctly "
                    f"load the model. You can inspect the repository content at https://hf.co/{pretrained_model_name}/blob/main/{custom_pipeline}.py.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

            if load_components_from_hub and not trust_remote_code:
                raise ValueError(
1539
1540
                    f"The repository for {pretrained_model_name} contains custom code in {'.py, '.join([os.path.join(k, v) for k, v in custom_components.items()])} which must be executed to correctly "
                    f"load the model. You can inspect the repository content at {', '.join([f'https://hf.co/{pretrained_model_name}/{k}/{v}.py' for k, v in custom_components.items()])}.\n"
1541
1542
1543
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

1544
1545
            # retrieve passed components that should not be downloaded
            pipeline_class = _get_pipeline_class(
1546
1547
1548
1549
                cls,
                config_dict,
                load_connected_pipeline=load_connected_pipeline,
                custom_pipeline=custom_pipeline,
1550
1551
1552
                repo_id=pretrained_model_name if load_pipe_from_hub else None,
                hub_revision=revision,
                class_name=custom_class_name,
1553
1554
                cache_dir=cache_dir,
                revision=custom_revision,
1555
1556
1557
1558
            )
            expected_components, _ = cls._get_signature_keys(pipeline_class)
            passed_components = [k for k in expected_components if k in kwargs]

1559
1560
1561
1562
            # retrieve the names of the folders containing model weights
            model_folder_names = {
                os.path.split(f)[0] for f in filter_model_files(filenames) if os.path.split(f)[0] in folder_names
            }
1563
1564
1565
1566
            # retrieve all patterns that should not be downloaded and error out when needed
            ignore_patterns = _get_ignore_patterns(
                passed_components,
                model_folder_names,
1567
                filenames,
1568
1569
1570
1571
1572
1573
1574
                use_safetensors,
                from_flax,
                allow_pickle,
                use_onnx,
                pipeline_class._is_onnx,
                variant,
            )
1575

1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
            model_filenames, variant_filenames = variant_compatible_siblings(
                filenames, variant=variant, ignore_patterns=ignore_patterns
            )

            # all filenames compatible with variant will be added
            allow_patterns = list(model_filenames)

            # allow all patterns from non-model folders
            # this enables downloading schedulers, tokenizers, ...
            allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
            # add custom component files
            allow_patterns += [f"{k}/{f}.py" for k, f in custom_components.items()]
            # add custom pipeline file
            allow_patterns += [f"{custom_pipeline}.py"] if f"{custom_pipeline}.py" in filenames else []
            # also allow downloading config.json files with the model
            allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
            allow_patterns += [
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                cls.config_name,
                CUSTOM_PIPELINE_FILE_NAME,
            ]

1599
1600
1601
1602
            # Don't download any objects that are passed
            allow_patterns = [
                p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
            ]
1603
1604
1605
1606

            if pipeline_class._load_connected_pipes:
                allow_patterns.append("README.md")

1607
1608
            # Don't download index files of forbidden patterns either
            ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]
1609
1610
1611
1612
1613
            re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
            re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

            expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
            expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
1614

1615
1616
            snapshot_folder = Path(config_file).parent
            pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
1617

1618
            if pipeline_is_cached and not force_download:
1619
1620
1621
                # if the pipeline is cached, we can directly return it
                # else call snapshot_download
                return snapshot_folder
1622

1623
1624
1625
        user_agent = {"pipeline_class": cls.__name__}
        if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
            user_agent["custom_pipeline"] = custom_pipeline
1626
1627

        # download all allow_patterns - ignore_patterns
1628
        try:
1629
            cached_folder = snapshot_download(
1630
1631
1632
1633
                pretrained_model_name,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
1634
                token=token,
1635
1636
1637
1638
1639
                revision=revision,
                allow_patterns=allow_patterns,
                ignore_patterns=ignore_patterns,
                user_agent=user_agent,
            )
1640

1641
            cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
1642
            cls_name = cls_name[4:] if isinstance(cls_name, str) and cls_name.startswith("Flax") else cls_name
1643

1644
1645
            diffusers_module = importlib.import_module(__name__.split(".")[0])
            pipeline_class = getattr(diffusers_module, cls_name, None) if isinstance(cls_name, str) else None
1646
1647

            if pipeline_class is not None and pipeline_class._load_connected_pipes:
1648
1649
1650
                modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
                connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
                for connected_pipe_repo_id in connected_pipes:
1651
1652
1653
1654
1655
                    download_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "local_files_only": local_files_only,
1656
                        "token": token,
1657
1658
1659
1660
                        "variant": variant,
                        "use_safetensors": use_safetensors,
                    }
                    DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)
1661
1662
1663

            return cached_folder

1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
        except FileNotFoundError:
            # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
            # This can happen in two cases:
            # 1. If the user passed `local_files_only=True`                    => we raise the error directly
            # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
            if model_info_call_error is None:
                # 1. user passed `local_files_only=True`
                raise
            else:
                # 2. we forced `local_files_only=True` when `model_info` failed
                raise EnvironmentError(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1675
                    f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occurred"
1676
1677
1678
                    " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                    " above."
                ) from model_info_call_error
1679

1680
1681
    @classmethod
    def _get_signature_keys(cls, obj):
1682
1683
1684
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
1685
        expected_modules = set(required_parameters.keys()) - {"self"}
1686
1687
1688
1689
1690
1691
1692

        optional_names = list(optional_parameters)
        for name in optional_names:
            if name in cls._optional_components:
                expected_modules.add(name)
                optional_parameters.remove(name)

1693
        return sorted(expected_modules), sorted(optional_parameters)
1694

1695
1696
1697
1698
1699
1700
1701
1702
    @classmethod
    def _get_signature_types(cls):
        signature_types = {}
        for k, v in inspect.signature(cls.__init__).parameters.items():
            if inspect.isclass(v.annotation):
                signature_types[k] = (v.annotation,)
            elif get_origin(v.annotation) == Union:
                signature_types[k] = get_args(v.annotation)
Dhruv Nair's avatar
Dhruv Nair committed
1703
1704
            elif get_origin(v.annotation) in [List, Dict, list, dict]:
                signature_types[k] = (v.annotation,)
1705
1706
1707
1708
            else:
                logger.warning(f"cannot get type annotation for Parameter {k} of {cls}.")
        return signature_types

1709
1710
1711
1712
    @property
    def components(self) -> Dict[str, Any]:
        r"""
        The `self.components` property can be useful to run different pipelines with the same weights and
Steven Liu's avatar
Steven Liu committed
1713
1714
1715
1716
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the modules needed to initialize the pipeline.
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

1727
        >>> text2img = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
1728
1729
1730
1731
1732
1733
1734
1735
1736
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

1737
1738
1739
        actual = sorted(set(components.keys()))
        expected = sorted(expected_modules)
        if actual != expected:
1740
1741
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
1742
                f" {expected} to be defined, but {actual} are defined."
1743
1744
1745
1746
1747
1748
1749
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
Steven Liu's avatar
Steven Liu committed
1750
        Convert a NumPy image or a batch of images to a PIL image.
1751
        """
Patrick von Platen's avatar
Patrick von Platen committed
1752
        return numpy_to_pil(images)
1753

lsb's avatar
lsb committed
1754
    @torch.compiler.disable
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs

1773
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
1774
        r"""
1775
1776
1777
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
        option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
        up during training is not guaranteed.
1778

Steven Liu's avatar
Steven Liu committed
1779
        <Tip warning={true}>
1780

Steven Liu's avatar
Steven Liu committed
1781
1782
1783
1784
        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import DiffusionPipeline
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")
        >>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        >>> # Workaround for not accepting attention shape using VAE for Flash Attention
        >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
        ```
1805
        """
1806
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
1807
1808
1809

    def disable_xformers_memory_efficient_attention(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1810
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
1811
1812
1813
        """
        self.set_use_memory_efficient_attention_xformers(False)

1814
1815
1816
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
1817
1818
1819
1820
1821
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
1822
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
1823
1824
1825
1826

            for child in module.children():
                fn_recursive_set_mem_eff(child)

1827
1828
1829
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
1830

1831
1832
        for module in modules:
            fn_recursive_set_mem_eff(module)
1833
1834
1835

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
1836
        Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
        in slices to compute attention in several steps. For more than one attention head, the computation is performed
        sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.

        <Tip warning={true}>

        ⚠️ Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA) from PyTorch
        2.0 or xFormers. These attention computations are already very memory efficient so you won't need to enable
        this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!

        </Tip>
1847
1848
1849
1850

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
1851
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
1852
1853
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
1854
1855
1856
1857
1858
1859
1860
1861

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained(
1862
        ...     "stable-diffusion-v1-5/stable-diffusion-v1-5",
1863
1864
1865
1866
1867
1868
1869
1870
        ...     torch_dtype=torch.float16,
        ...     use_safetensors=True,
        ... )

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> pipe.enable_attention_slicing()
        >>> image = pipe(prompt).images[0]
        ```
1871
1872
1873
1874
1875
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1876
1877
        Disable sliced attention computation. If `enable_attention_slicing` was previously called, attention is
        computed in one step.
1878
1879
1880
1881
1882
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
1883
1884
1885
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
1886

1887
1888
        for module in modules:
            module.set_attention_slice(slice_size)
1889

1890
1891
1892
    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
1893
1894
        Create a new pipeline from a given pipeline. This method is useful to create a new pipeline from the existing
        pipeline components without reallocating additional memory.
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908

        Arguments:
            pipeline (`DiffusionPipeline`):
                The pipeline from which to create a new pipeline.

        Returns:
            `DiffusionPipeline`:
                A new pipeline with the same weights and configurations as `pipeline`.

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline

1909
        >>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
1910
1911
1912
1913
1914
        >>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe)
        ```
        """

        original_config = dict(pipeline.config)
1915
        torch_dtype = kwargs.pop("torch_dtype", torch.float32)
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952

        # derive the pipeline class to instantiate
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)

        if custom_pipeline is not None:
            pipeline_class = _get_custom_pipeline_class(custom_pipeline, revision=custom_revision)
        else:
            pipeline_class = cls

        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        # true_optional_modules are optional components with default value in signature so it is ok not to pass them to `__init__`
        # e.g. `image_encoder` for StableDiffusionPipeline
        parameters = inspect.signature(cls.__init__).parameters
        true_optional_modules = set(
            {k for k, v in parameters.items() if v.default != inspect._empty and k in expected_modules}
        )

        # get the class of each component based on its type hint
        # e.g. {"unet": UNet2DConditionModel, "text_encoder": CLIPTextMode}
        component_types = pipeline_class._get_signature_types()

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

        original_class_obj = {}
        for name, component in pipeline.components.items():
            if name in expected_modules and name not in passed_class_obj:
                # for model components, we will not switch over if the class does not matches the type hint in the new pipeline's signature
                if (
                    not isinstance(component, ModelMixin)
                    or type(component) in component_types[name]
                    or (component is None and name in cls._optional_components)
                ):
                    original_class_obj[name] = component
                else:
1953
                    logger.warning(
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
                        f"component {name} is not switched over to new pipeline because type does not match the expected."
                        f" {name} is {type(component)} while the new pipeline expect {component_types[name]}."
                        f" please pass the component of the correct type to the new pipeline. `from_pipe(..., {name}={name})`"
                    )

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k in original_config.keys()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by pipeline is stored as its private attribute
        # (i.e. when the original pipeline was also instantiated with `from_pipe` from another pipeline that has this config)
        # in this case, we will pass them as optional arguments if they can be accepted by the new pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        pipeline_kwargs = {
            **passed_class_obj,
            **original_class_obj,
            **passed_pipe_kwargs,
            **original_pipe_kwargs,
            **kwargs,
        }

        # store unused config as private attribute in the new pipeline
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": v for k, v in original_config.items() if k not in pipeline_kwargs
        }

YiYi Xu's avatar
YiYi Xu committed
1991
1992
1993
1994
1995
        optional_components = (
            pipeline._optional_components
            if hasattr(pipeline, "_optional_components") and pipeline._optional_components
            else []
        )
1996
        missing_modules = (
YiYi Xu's avatar
YiYi Xu committed
1997
            set(expected_modules) - set(optional_components) - set(pipeline_kwargs.keys()) - set(true_optional_modules)
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
        )

        if len(missing_modules) > 0:
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
            )

        new_pipeline = pipeline_class(**pipeline_kwargs)
        if pretrained_model_name_or_path is not None:
            new_pipeline.register_to_config(_name_or_path=pretrained_model_name_or_path)
        new_pipeline.register_to_config(**unused_original_config)

        if torch_dtype is not None:
            new_pipeline.to(dtype=torch_dtype)

        return new_pipeline

Aryan's avatar
Aryan committed
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
    def _maybe_raise_error_if_group_offload_active(
        self, raise_error: bool = False, module: Optional[torch.nn.Module] = None
    ) -> bool:
        from ..hooks.group_offloading import _is_group_offload_enabled

        components = self.components.values() if module is None else [module]
        components = [component for component in components if isinstance(component, torch.nn.Module)]
        for component in components:
            if _is_group_offload_enabled(component):
                if raise_error:
                    raise ValueError(
                        "You are trying to apply model/sequential CPU offloading to a pipeline that contains components "
                        "with group offloading enabled. This is not supported. Please disable group offloading for "
                        "components of the pipeline to use other offloading methods."
                    )
                return True
        return False

2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068

class StableDiffusionMixin:
    r"""
    Helper for DiffusionPipeline with vae and unet.(mainly for LDM such as stable diffusion)
    """

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
2069
        r"""Enables the FreeU mechanism as in https://huggingface.co/papers/2309.11497.
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

    def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """
2096
2097
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.
        """
        self.fusing_unet = False
        self.fusing_vae = False

        if unet:
            self.fusing_unet = True
            self.unet.fuse_qkv_projections()
            self.unet.set_attn_processor(FusedAttnProcessor2_0())

        if vae:
            if not isinstance(self.vae, AutoencoderKL):
                raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")

            self.fusing_vae = True
            self.vae.fuse_qkv_projections()
            self.vae.set_attn_processor(FusedAttnProcessor2_0())

    def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """Disable QKV projection fusion if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.

        """
        if unet:
            if not self.fusing_unet:
                logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
            else:
                self.unet.unfuse_qkv_projections()
                self.fusing_unet = False

        if vae:
            if not self.fusing_vae:
                logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
            else:
                self.vae.unfuse_qkv_projections()
                self.fusing_vae = False