pipeline_utils.py 18.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
18
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
19
import os
20
21
from dataclasses import dataclass
from typing import List, Optional, Union
anton-l's avatar
Style  
anton-l committed
22

23
import numpy as np
Pedro Cuenca's avatar
Pedro Cuenca committed
24
25
import torch

26
import PIL
Patrick von Platen's avatar
up  
Patrick von Platen committed
27
from huggingface_hub import snapshot_download
28
from PIL import Image
hysts's avatar
hysts committed
29
from tqdm.auto import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
30

Patrick von Platen's avatar
Patrick von Platen committed
31
from .configuration_utils import ConfigMixin
32
from .utils import DIFFUSERS_CACHE, BaseOutput, logging
Patrick von Platen's avatar
improve  
Patrick von Platen committed
33

Patrick von Platen's avatar
Patrick von Platen committed
34

Patrick von Platen's avatar
Patrick von Platen committed
35
INDEX_FILE = "diffusion_pytorch_model.bin"
Patrick von Platen's avatar
Patrick von Platen committed
36
37
38
39
40
41
42


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
43
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
44
        "SchedulerMixin": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
45
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
46
47
    },
    "transformers": {
anton-l's avatar
anton-l committed
48
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
49
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
50
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Suraj Patil's avatar
Suraj Patil committed
51
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
52
53
54
    },
}

55
56
57
58
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


Patrick von Platen's avatar
Patrick von Platen committed
74
class DiffusionPipeline(ConfigMixin):
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    r"""
    Base class for all models.

    [`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines
    and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to:

        - move all PyTorch modules to the device of your choice
        - enabling/disabling the progress bar for the denoising iteration

    Class attributes:

        - **config_name** ([`str`]) -- name of the config file that will store the class and module names of all
          compenents of the diffusion pipeline.
    """
Patrick von Platen's avatar
Patrick von Platen committed
89
90
    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
91
    def register_modules(self, **kwargs):
92
93
        # import it here to avoid circular import
        from diffusers import pipelines
94

Patrick von Platen's avatar
Patrick von Platen committed
95
96
97
        for name, module in kwargs.items():
            # retrive library
            library = module.__module__.split(".")[0]
98

99
100
            # check if the module is a pipeline module
            pipeline_dir = module.__module__.split(".")[-2]
Suraj Patil's avatar
Suraj Patil committed
101
102
            path = module.__module__.split(".")
            is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
103

104
105
            # if library is not in LOADABLE_CLASSES, then it is a custom module.
            # Or if it's a pipeline module, then the module is inside the pipeline
106
            # folder so we set the library to module name.
107
            if library not in LOADABLE_CLASSES or is_pipeline_module:
108
                library = pipeline_dir
patil-suraj's avatar
patil-suraj committed
109

Patrick von Platen's avatar
Patrick von Platen committed
110
111
112
            # retrive class_name
            class_name = module.__class__.__name__

113
114
            register_dict = {name: (library, class_name)}

Patrick von Platen's avatar
Patrick von Platen committed
115
            # save model index config
116
            self.register_to_config(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
117
118
119

            # set models
            setattr(self, name, module)
120

Patrick von Platen's avatar
Patrick von Platen committed
121
    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
122
123
124
125
126
127
128
129
130
        """
        Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to
        a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading
        method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
        """
Patrick von Platen's avatar
Patrick von Platen committed
131
132
        self.save_config(save_directory)

Patrick von Platen's avatar
Patrick von Platen committed
133
        model_index_dict = dict(self.config)
Patrick von Platen's avatar
Patrick von Platen committed
134
        model_index_dict.pop("_class_name")
135
        model_index_dict.pop("_diffusers_version")
136
        model_index_dict.pop("_module", None)
Patrick von Platen's avatar
Patrick von Platen committed
137

anton-l's avatar
anton-l committed
138
139
140
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
141
142

            save_method_name = None
anton-l's avatar
anton-l committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class)
                    if issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
157

Pedro Cuenca's avatar
Pedro Cuenca committed
158
159
160
161
162
163
164
165
166
167
168
169
170
    def to(self, torch_device: Optional[Union[str, torch.device]] = None):
        if torch_device is None:
            return self

        module_names, _ = self.extract_init_dict(dict(self.config))
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
                module.to(torch_device)
        return self

    @property
    def device(self) -> torch.device:
171
172
173
174
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
Pedro Cuenca's avatar
Pedro Cuenca committed
175
176
177
178
179
180
181
        module_names, _ = self.extract_init_dict(dict(self.config))
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
                return module.device
        return torch.device("cpu")

Patrick von Platen's avatar
Patrick von Platen committed
182
183
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
184
        r"""
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights.

        The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).

        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.

        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
        weights are discarded.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *repo id* of a pretrained pipeline hosted inside a model repo on
                      https://huggingface.co/ Valid repo ids have to be located under a user or organization name, like
                      `CompVis/ldm-text2im-large-256`.
                    - A path to a *directory* containing pipeline weights saved using
                      [`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information. specify the folder name here.

            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
                speficic pipeline class. The overritten components are then directly passed to the pipelines `__init__`
                method. See example below for more information.

        <Tip>

        Passing `use_auth_token=True`` is required when you want to use a private model, *e.g.*
        `"CompVis/stable-diffusion-v1-4"`

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use
        this method in a firewalled environment.

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True)

        >>> # Download pipeline, but overwrite scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        >>> pipeline = DiffusionPipeline.from_pretrained(
        ...     "CompVis/stable-diffusion-v1-4", scheduler=scheduler, use_auth_token=True
        ... )
        ```
273
274
275
276
277
278
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
279
        revision = kwargs.pop("revision", None)
280
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
281

patil-suraj's avatar
patil-suraj committed
282
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
283
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
284
        if not os.path.isdir(pretrained_model_name_or_path):
285
286
287
288
289
290
291
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
292
                revision=revision,
293
            )
Patrick von Platen's avatar
Patrick von Platen committed
294
295
        else:
            cached_folder = pretrained_model_name_or_path
296

patil-suraj's avatar
patil-suraj committed
297
        config_dict = cls.get_config_dict(cached_folder)
298

Patrick von Platen's avatar
Patrick von Platen committed
299
        # 2. Load the pipeline class, if using custom module then load it from the hub
300
301
        # if we load from explicit class, let's use it
        if cls != DiffusionPipeline:
302
303
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
304
305
306
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

307
308
309
310
311
312
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules = set(inspect.signature(pipeline_class.__init__).parameters.keys())
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

313
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
314
315

        init_kwargs = {}
316

317
318
        # import it here to avoid circular import
        from diffusers import pipelines
319

Patrick von Platen's avatar
Patrick von Platen committed
320
        # 3. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
321
        for name, (library_name, class_name) in init_dict.items():
322
            is_pipeline_module = hasattr(pipelines, library_name)
323
324
            loaded_sub_model = None

325
            # if the model is in a pipeline module, then we load it from the pipeline
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
            if name in passed_class_obj:
                # 1. check that passed_class_obj has correct parent class
                if not is_pipeline_module:
                    library = importlib.import_module(library_name)
                    class_obj = getattr(library, class_name)
                    importable_classes = LOADABLE_CLASSES[library_name]
                    class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}

                    expected_class_obj = None
                    for class_name, class_candidate in class_candidates.items():
                        if issubclass(class_obj, class_candidate):
                            expected_class_obj = class_candidate

                    if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
                        raise ValueError(
                            f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
                            f" {expected_class_obj}"
                        )
                else:
                    logger.warn(
                        f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
                        " has the correct type"
                    )

                # set passed class object
                loaded_sub_model = passed_class_obj[name]
            elif is_pipeline_module:
353
354
355
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
Patrick von Platen's avatar
Patrick von Platen committed
356
                class_candidates = {c: class_obj for c in importable_classes.keys()}
patil-suraj's avatar
patil-suraj committed
357
            else:
patil-suraj's avatar
patil-suraj committed
358
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
359
360
                library = importlib.import_module(library_name)
                class_obj = getattr(library, class_name)
361
                importable_classes = LOADABLE_CLASSES[library_name]
patil-suraj's avatar
patil-suraj committed
362
                class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
363

364
365
366
367
368
            if loaded_sub_model is None:
                load_method_name = None
                for class_name, class_candidate in class_candidates.items():
                    if issubclass(class_obj, class_candidate):
                        load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
369

370
                load_method = getattr(class_obj, load_method_name)
Patrick von Platen's avatar
Patrick von Platen committed
371

372
373
374
375
                loading_kwargs = {}
                if issubclass(class_obj, torch.nn.Module):
                    loading_kwargs["torch_dtype"] = torch_dtype

376
377
                # check if the module is in a subdirectory
                if os.path.isdir(os.path.join(cached_folder, name)):
378
                    loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
379
380
                else:
                    # else load from the root directory
381
                    loaded_sub_model = load_method(cached_folder, **loading_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
382

383
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
384

385
        # 4. Instantiate the pipeline
386
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
387
        return model
388
389
390
391
392
393
394
395
396
397
398
399

    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        pil_images = [Image.fromarray(image) for image in images]

        return pil_images
hysts's avatar
hysts committed
400
401
402
403
404
405
406
407
408
409
410
411
412

    def progress_bar(self, iterable):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        return tqdm(iterable, **self._progress_bar_config)

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs