pipeline_utils.py 113 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
import fnmatch
17
18
19
import importlib
import inspect
import os
20
import re
21
import sys
22
23
from dataclasses import dataclass
from pathlib import Path
24
from typing import Any, Callable, Dict, List, Optional, Union, get_args, get_origin
25

26
import httpx
27
import numpy as np
Anh71me's avatar
Anh71me committed
28
import PIL.Image
29
import requests
30
import torch
31
from huggingface_hub import (
Marc Sun's avatar
Marc Sun committed
32
    DDUFEntry,
33
34
35
36
    ModelCard,
    create_repo,
    hf_hub_download,
    model_info,
Marc Sun's avatar
Marc Sun committed
37
    read_dduf_file,
38
39
    snapshot_download,
)
40
from huggingface_hub.utils import HfHubHTTPError, OfflineModeIsEnabled, validate_hf_hub_args
41
42
from packaging import version
from tqdm.auto import tqdm
43
from typing_extensions import Self
44

45
from .. import __version__
46
from ..configuration_utils import ConfigMixin
47
48
from ..models import AutoencoderKL
from ..models.attention_processor import FusedAttnProcessor2_0
49
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, ModelMixin
50
from ..quantizers import PipelineQuantizationConfig
51
from ..quantizers.bitsandbytes.utils import _check_bnb_status
52
53
54
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
    CONFIG_NAME,
55
    DEPRECATED_REVISION_ARGS,
56
    BaseOutput,
57
    PushToHubMixin,
58
59
    _get_detailed_type,
    _is_valid_type,
60
    deprecate,
61
    is_accelerate_available,
62
    is_accelerate_version,
63
    is_hpu_available,
Mengqing Cao's avatar
Mengqing Cao committed
64
    is_torch_npu_available,
65
    is_torch_version,
66
    is_transformers_version,
67
    logging,
Patrick von Platen's avatar
Patrick von Platen committed
68
    numpy_to_pil,
69
)
70
from ..utils.hub_utils import _check_legacy_sharding_variant_format, load_or_create_model_card, populate_model_card
71
from ..utils.torch_utils import empty_device_cache, get_device, is_compiled_module
Mengqing Cao's avatar
Mengqing Cao committed
72
73
74
75
76


if is_torch_npu_available():
    import torch_npu  # noqa: F401

77
78
79
80
81
from .pipeline_loading_utils import (
    ALL_IMPORTABLE_CLASSES,
    CONNECTED_PIPES_KEYS,
    CUSTOM_PIPELINE_FILE_NAME,
    LOADABLE_CLASSES,
Marc Sun's avatar
Marc Sun committed
82
    _download_dduf_file,
83
    _fetch_class_library_tuple,
84
    _get_custom_components_and_folders,
85
    _get_custom_pipeline_class,
86
    _get_final_device_map,
87
    _get_ignore_patterns,
88
    _get_pipeline_class,
89
    _identify_model_variants,
Marc Sun's avatar
Marc Sun committed
90
    _maybe_raise_error_for_incorrect_transformers,
91
    _maybe_raise_warning_for_inpainting,
92
    _maybe_warn_for_wrong_component_in_quant_config,
93
    _resolve_custom_pipeline_and_cls,
94
    _unwrap_model,
95
    _update_init_kwargs_with_connected_pipeline,
96
    filter_model_files,
97
98
99
100
101
    load_sub_model,
    maybe_raise_or_warn,
    variant_compatible_siblings,
    warn_deprecated_model_variant,
)
102
103


104
105
106
107
if is_accelerate_available():
    import accelerate


108
109
110
LIBRARIES = []
for library in LOADABLE_CLASSES:
    LIBRARIES.append(library)
111

112
SUPPORTED_DEVICE_MAP = ["balanced"] + [get_device()]
113

114
115
116
117
118
119
120
121
122
123
logger = logging.get_logger(__name__)


@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
Steven Liu's avatar
Steven Liu committed
124
125
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
126
127
128
129
130
131
132
133
134
135
136
137
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
Steven Liu's avatar
Steven Liu committed
138
            List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
139
140
141
142
143
    """

    audios: np.ndarray


144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
class DeprecatedPipelineMixin:
    """
    A mixin that can be used to mark a pipeline as deprecated.

    Pipelines inheriting from this mixin will raise a warning when instantiated, indicating that they are deprecated
    and won't receive updates past the specified version. Tests will be skipped for pipelines that inherit from this
    mixin.

    Example usage:
    ```python
    class MyDeprecatedPipeline(DeprecatedPipelineMixin, DiffusionPipeline):
        _last_supported_version = "0.20.0"

        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
    ```
    """

    # Override this in the inheriting class to specify the last version that will support this pipeline
    _last_supported_version = None

    def __init__(self, *args, **kwargs):
        # Get the class name for the warning message
        class_name = self.__class__.__name__

        # Get the last supported version or use the current version if not specified
        version_info = getattr(self.__class__, "_last_supported_version", __version__)

        # Raise a warning that this pipeline is deprecated
        logger.warning(
            f"The {class_name} has been deprecated and will not receive bug fixes or feature updates after Diffusers version {version_info}. "
        )

        # Call the parent class's __init__ method
        super().__init__(*args, **kwargs)


181
class DiffusionPipeline(ConfigMixin, PushToHubMixin):
182
    r"""
Steven Liu's avatar
Steven Liu committed
183
    Base class for all pipelines.
184

Steven Liu's avatar
Steven Liu committed
185
186
    [`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
    provides methods for loading, downloading and saving models. It also includes methods to:
187
188

        - move all PyTorch modules to the device of your choice
189
        - enable/disable the progress bar for the denoising iteration
190
191
192

    Class attributes:

Steven Liu's avatar
Steven Liu committed
193
194
        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.
195
        - **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
Steven Liu's avatar
Steven Liu committed
196
          pipeline to function (should be overridden by subclasses).
197
    """
198

199
    config_name = "model_index.json"
200
    model_cpu_offload_seq = None
201
    hf_device_map = None
202
    _optional_components = []
203
    _exclude_from_cpu_offload = []
204
    _load_connected_pipes = False
205
    _is_onnx = False
206
207
208
209

    def register_modules(self, **kwargs):
        for name, module in kwargs.items():
            # retrieve library
210
            if module is None or isinstance(module, (tuple, list)) and module[0] is None:
211
212
                register_dict = {name: (None, None)}
            else:
213
                library, class_name = _fetch_class_library_tuple(module)
214
215
216
217
218
219
220
221
                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

222
    def __setattr__(self, name: str, value: Any):
223
        if name in self.__dict__ and hasattr(self.config, name):
224
225
            # We need to overwrite the config if name exists in config
            if isinstance(getattr(self.config, name), (tuple, list)):
226
                if value is not None and self.config[name][0] is not None:
227
                    class_library_tuple = _fetch_class_library_tuple(value)
228
229
230
231
232
233
234
235
236
                else:
                    class_library_tuple = (None, None)

                self.register_to_config(**{name: class_library_tuple})
            else:
                self.register_to_config(**{name: value})

        super().__setattr__(name, value)

237
238
239
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
240
        safe_serialization: bool = True,
241
        variant: Optional[str] = None,
242
        max_shard_size: Optional[Union[int, str]] = None,
243
244
        push_to_hub: bool = False,
        **kwargs,
245
246
    ):
        """
Steven Liu's avatar
Steven Liu committed
247
248
249
        Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
        class implements both a save and loading method. The pipeline is easily reloaded using the
        [`~DiffusionPipeline.from_pretrained`] class method.
250
251
252

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
253
                Directory to save a pipeline to. Will be created if it doesn't exist.
254
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
255
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
256
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
257
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
258
            max_shard_size (`int` or `str`, defaults to `None`):
259
260
261
262
263
264
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`).
                If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain
                period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`.
                This is to establish a common default size for this argument across different libraries in the Hugging
                Face ecosystem (`transformers`, and `accelerate`, for example).
265
266
267
268
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
Marc Sun's avatar
Marc Sun committed
269

270
271
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
272
273
        """
        model_index_dict = dict(self.config)
274
275
        model_index_dict.pop("_class_name", None)
        model_index_dict.pop("_diffusers_version", None)
276
        model_index_dict.pop("_module", None)
277
        model_index_dict.pop("_name_or_path", None)
278

279
280
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
281
            private = kwargs.pop("private", None)
282
283
284
285
286
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

287
288
289
290
291
292
293
294
295
296
297
298
299
300
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__

301
302
303
            # Dynamo wraps the original model in a private class.
            # I didn't find a public API to get the original class.
            if is_compiled_module(sub_model):
304
                sub_model = _unwrap_model(sub_model)
305
306
                model_cls = sub_model.__class__

307
308
309
            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
310
311
312
313
314
315
316
                if library_name in sys.modules:
                    library = importlib.import_module(library_name)
                else:
                    logger.info(
                        f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
                    )

317
318
319
320
321
322
323
324
325
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

326
            if save_method_name is None:
327
328
329
                logger.warning(
                    f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved."
                )
330
331
332
333
                # make sure that unsaveable components are not tried to be loaded afterward
                self.register_to_config(**{pipeline_component_name: (None, None)})
                continue

334
335
336
337
338
            save_method = getattr(sub_model, save_method_name)

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
339
            save_method_accept_variant = "variant" in save_method_signature.parameters
340
            save_method_accept_max_shard_size = "max_shard_size" in save_method_signature.parameters
341
342

            save_kwargs = {}
343
            if save_method_accept_safe:
344
345
346
                save_kwargs["safe_serialization"] = safe_serialization
            if save_method_accept_variant:
                save_kwargs["variant"] = variant
347
348
            if save_method_accept_max_shard_size and max_shard_size is not None:
                # max_shard_size is expected to not be None in ModelMixin
349
                save_kwargs["max_shard_size"] = max_shard_size
350
351

            save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
352

353
354
355
        # finally save the config
        self.save_config(save_directory)

356
        if push_to_hub:
357
358
359
360
361
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token, is_pipeline=True)
            model_card = populate_model_card(model_card)
            model_card.save(os.path.join(save_directory, "README.md"))

362
363
364
365
366
367
368
369
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

370
    def to(self, *args, **kwargs) -> Self:
371
372
373
374
        r"""
        Performs Pipeline dtype and/or device conversion. A torch.dtype and torch.device are inferred from the
        arguments of `self.to(*args, **kwargs).`

Steven Liu's avatar
Steven Liu committed
375
376
        > [!TIP] > If the pipeline already has the correct torch.dtype and torch.device, then it is returned as is.
        Otherwise, > the returned pipeline is a copy of self with the desired torch.dtype and torch.device.
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401


        Here are the ways to call `to`:

        - `to(dtype, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
        - `to(device, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
        - `to(device=None, dtype=None, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the
          specified [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device) and
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)

        Arguments:
            dtype (`torch.dtype`, *optional*):
                Returns a pipeline with the specified
                [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
            device (`torch.Device`, *optional*):
                Returns a pipeline with the specified
                [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
            silence_dtype_warnings (`str`, *optional*, defaults to `False`):
                Whether to omit warnings if the target `dtype` is not compatible with the target `device`.

        Returns:
            [`DiffusionPipeline`]: The pipeline converted to specified `dtype` and/or `dtype`.
        """
402
403
        dtype = kwargs.pop("dtype", None)
        device = kwargs.pop("device", None)
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        silence_dtype_warnings = kwargs.pop("silence_dtype_warnings", False)

        dtype_arg = None
        device_arg = None
        if len(args) == 1:
            if isinstance(args[0], torch.dtype):
                dtype_arg = args[0]
            else:
                device_arg = torch.device(args[0]) if args[0] is not None else None
        elif len(args) == 2:
            if isinstance(args[0], torch.dtype):
                raise ValueError(
                    "When passing two arguments, make sure the first corresponds to `device` and the second to `dtype`."
                )
            device_arg = torch.device(args[0]) if args[0] is not None else None
            dtype_arg = args[1]
        elif len(args) > 2:
            raise ValueError("Please make sure to pass at most two arguments (`device` and `dtype`) `.to(...)`")

        if dtype is not None and dtype_arg is not None:
            raise ValueError(
                "You have passed `dtype` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        dtype = dtype or dtype_arg

        if device is not None and device_arg is not None:
            raise ValueError(
                "You have passed `device` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        device = device or device_arg
Aryan's avatar
Aryan committed
436
        device_type = torch.device(device).type if device is not None else None
437
        pipeline_has_bnb = any(any((_check_bnb_status(module))) for _, module in self.components.items())
438

439
440
441
442
443
        # throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
        def module_is_sequentially_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
                return False

444
445
446
447
448
            _, _, is_loaded_in_8bit_bnb = _check_bnb_status(module)

            if is_loaded_in_8bit_bnb:
                return False

449
450
451
452
453
            return hasattr(module, "_hf_hook") and (
                isinstance(module._hf_hook, accelerate.hooks.AlignDevicesHook)
                or hasattr(module._hf_hook, "hooks")
                and isinstance(module._hf_hook.hooks[0], accelerate.hooks.AlignDevicesHook)
            )
454
455
456
457
458
459
460
461
462
463
464

        def module_is_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
                return False

            return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)

        # .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
        pipeline_is_sequentially_offloaded = any(
            module_is_sequentially_offloaded(module) for _, module in self.components.items()
        )
465
466
467
468
469
470
471

        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline which doesn't allow explicit device placement using `to()`. You can call `reset_device_map()` to remove the existing device map from the pipeline."
            )

472
        if device_type in ["cuda", "xpu"]:
473
474
475
476
477
478
479
480
481
            if pipeline_is_sequentially_offloaded and not pipeline_has_bnb:
                raise ValueError(
                    "It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
                )
            # PR: https://github.com/huggingface/accelerate/pull/3223/
            elif pipeline_has_bnb and is_accelerate_version("<", "1.1.0.dev0"):
                raise ValueError(
                    "You are trying to call `.to('cuda')` on a pipeline that has models quantized with `bitsandbytes`. Your current `accelerate` installation does not support it. Please upgrade the installation."
                )
482
483
484

        # Display a warning in this case (the operation succeeds but the benefits are lost)
        pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
485
        if pipeline_is_offloaded and device_type in ["cuda", "xpu"]:
486
487
488
489
            logger.warning(
                f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
            )

490
491
492
493
494
495
496
497
498
499
500
501
502
503
        # Enable generic support for Intel Gaudi accelerator using GPU/HPU migration
        if device_type == "hpu" and kwargs.pop("hpu_migration", True) and is_hpu_available():
            os.environ["PT_HPU_GPU_MIGRATION"] = "1"
            logger.debug("Environment variable set: PT_HPU_GPU_MIGRATION=1")

            import habana_frameworks.torch  # noqa: F401

            # HPU hardware check
            if not (hasattr(torch, "hpu") and torch.hpu.is_available()):
                raise ValueError("You are trying to call `.to('hpu')` but HPU device is unavailable.")

            os.environ["PT_HPU_MAX_COMPOUND_OP_SIZE"] = "1"
            logger.debug("Environment variable set: PT_HPU_MAX_COMPOUND_OP_SIZE=1")

504
505
506
507
508
509
510
            if dtype in (torch.bfloat16, None) and kwargs.pop("sdp_on_bf16", True):
                if hasattr(torch._C, "_set_math_sdp_allow_fp16_bf16_reduction"):
                    torch._C._set_math_sdp_allow_fp16_bf16_reduction(True)
                    logger.warning(
                        "Enabled SDP with BF16 precision on HPU. To disable, please use `.to('hpu', sdp_on_bf16=False)`"
                    )

511
        module_names, _ = self._get_signature_keys(self)
512
513
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
514

515
        is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
516
        for module in modules:
517
            _, is_loaded_in_4bit_bnb, is_loaded_in_8bit_bnb = _check_bnb_status(module)
Aryan's avatar
Aryan committed
518
            is_group_offloaded = self._maybe_raise_error_if_group_offload_active(module=module)
Patrick von Platen's avatar
Patrick von Platen committed
519

520
            if (is_loaded_in_4bit_bnb or is_loaded_in_8bit_bnb) and dtype is not None:
Patrick von Platen's avatar
Patrick von Platen committed
521
                logger.warning(
522
                    f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` {'4bit' if is_loaded_in_4bit_bnb else '8bit'} and conversion to {dtype} is not supported. Module is still in {'4bit' if is_loaded_in_4bit_bnb else '8bit'} precision."
Patrick von Platen's avatar
Patrick von Platen committed
523
524
                )

525
            if is_loaded_in_8bit_bnb and device is not None:
Patrick von Platen's avatar
Patrick von Platen committed
526
                logger.warning(
527
                    f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` 8bit and moving it to {device} via `.to()` is not supported. Module is still on {module.device}."
Patrick von Platen's avatar
Patrick von Platen committed
528
                )
529

Aryan's avatar
Aryan committed
530
531
532
533
534
535
536
537
538
539
            # Note: we also handle this at the ModelMixin level. The reason for doing it here too is that modeling
            # components can be from outside diffusers too, but still have group offloading enabled.
            if (
                self._maybe_raise_error_if_group_offload_active(raise_error=False, module=module)
                and device is not None
            ):
                logger.warning(
                    f"The module '{module.__class__.__name__}' is group offloaded and moving it to {device} via `.to()` is not supported."
                )

540
541
542
543
            # This can happen for `transformer` models. CPU placement was added in
            # https://github.com/huggingface/transformers/pull/33122. So, we guard this accordingly.
            if is_loaded_in_4bit_bnb and device is not None and is_transformers_version(">", "4.44.0"):
                module.to(device=device)
Aryan's avatar
Aryan committed
544
            elif not is_loaded_in_4bit_bnb and not is_loaded_in_8bit_bnb and not is_group_offloaded:
545
                module.to(device, dtype)
Patrick von Platen's avatar
Patrick von Platen committed
546

547
548
            if (
                module.dtype == torch.float16
549
                and str(device) in ["cpu"]
550
551
552
553
                and not silence_dtype_warnings
                and not is_offloaded
            ):
                logger.warning(
554
                    "Pipelines loaded with `dtype=torch.float16` cannot run with `cpu` device. It"
555
556
557
558
559
                    " is not recommended to move them to `cpu` as running them will fail. Please make"
                    " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                    " support for`float16` operations on this device in PyTorch. Please, remove the"
                    " `torch_dtype=torch.float16` argument, or use another device for inference."
                )
560
561
562
563
564
565
566
567
        return self

    @property
    def device(self) -> torch.device:
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
568
        module_names, _ = self._get_signature_keys(self)
569
570
571
572
573
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.device
574

575
576
        return torch.device("cpu")

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    @property
    def dtype(self) -> torch.dtype:
        r"""
        Returns:
            `torch.dtype`: The torch dtype on which the pipeline is located.
        """
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.dtype

        return torch.float32

592
    @classmethod
593
    @validate_hf_hub_args
594
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs) -> Self:
595
        r"""
Steven Liu's avatar
Steven Liu committed
596
        Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
597

Steven Liu's avatar
Steven Liu committed
598
        The pipeline is set in evaluation mode (`model.eval()`) by default.
599

Steven Liu's avatar
Steven Liu committed
600
        If you get the error message below, you need to finetune the weights for your downstream task:
601

Steven Liu's avatar
Steven Liu committed
602
        ```
603
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
Steven Liu's avatar
Steven Liu committed
604
605
606
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
607
608
609
610
611

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
612
613
614
615
616
                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
Marc Sun's avatar
Marc Sun committed
617
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing a dduf file
618
619
620
621
622
623
            torch_dtype (`torch.dtype` or `dict[str, Union[str, torch.dtype]]`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. To load submodels with
                different dtype pass a `dict` (for example `{'transformer': torch.bfloat16, 'vae': torch.float16}`).
                Set the default dtype for unspecified components with `default` (for example `{'transformer':
                torch.bfloat16, 'default': torch.float16}`). If a component is not specified and no default is set,
                `torch.float32` is used.
624
625
            custom_pipeline (`str`, *optional*):

Steven Liu's avatar
Steven Liu committed
626
                > [!WARNING] > 🧪 This is an experimental feature and may change in the future.
627
628
629

                Can be either:

Steven Liu's avatar
Steven Liu committed
630
631
632
                    - A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
                      pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
                      the custom pipeline.
633
                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
634
635
636
637
638
639
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current main branch of GitHub.
                    - A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
640
641
642
643
644
645
646

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
647
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
648
649
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
650

651
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
652
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
653
654
655
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
656
657
658
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
659
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
660
661
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
662
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
663
664
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
665
            custom_revision (`str`, *optional*):
666
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
667
668
                `revision` when loading a custom pipeline from the Hub. Defaults to the latest stable 🤗 Diffusers
                version.
669
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
670
671
672
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
673
674
675
676
677
            device_map (`str`, *optional*):
                Strategy that dictates how the different components of a pipeline should be placed on available
                devices. Currently, only "balanced" `device_map` is supported. Check out
                [this](https://huggingface.co/docs/diffusers/main/en/tutorials/inference_with_big_models#device-placement)
                to know more.
678
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
679
680
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
681
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
682
                The path to offload weights if device_map contains the value `"disk"`.
683
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
684
685
686
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
687
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
688
689
690
691
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
692
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
693
694
695
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
696
697
698
699
700
            use_onnx (`bool`, *optional*, defaults to `None`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
701
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
702
703
704
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
705
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
706
707
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
Marc Sun's avatar
Marc Sun committed
708
709
            dduf_file(`str`, *optional*):
                Load weights from the specified dduf file.
710

Steven Liu's avatar
Steven Liu committed
711
712
        > [!TIP] > To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in
        with `hf > auth login`.
713
714
715
716
717
718
719
720
721
722
723
724

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
725
        >>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
726
727
728
729
730
731
732
733

        >>> # Use a different scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
734
735
736
        # Copy the kwargs to re-use during loading connected pipeline.
        kwargs_copied = kwargs.copy()

737
        cache_dir = kwargs.pop("cache_dir", None)
738
739
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
740
741
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
742
        revision = kwargs.pop("revision", None)
743
        from_flax = kwargs.pop("from_flax", False)
744
        torch_dtype = kwargs.pop("torch_dtype", None)
745
746
747
748
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
749
        provider_options = kwargs.pop("provider_options", None)
750
        device_map = kwargs.pop("device_map", None)
751
752
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
753
        offload_state_dict = kwargs.pop("offload_state_dict", None)
754
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
755
        variant = kwargs.pop("variant", None)
Marc Sun's avatar
Marc Sun committed
756
        dduf_file = kwargs.pop("dduf_file", None)
757
        use_safetensors = kwargs.pop("use_safetensors", None)
758
        use_onnx = kwargs.pop("use_onnx", None)
759
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
760
        quantization_config = kwargs.pop("quantization_config", None)
761

762
        if torch_dtype is not None and not isinstance(torch_dtype, dict) and not isinstance(torch_dtype, torch.dtype):
763
764
765
766
767
            torch_dtype = torch.float32
            logger.warning(
                f"Passed `torch_dtype` {torch_dtype} is not a `torch.dtype`. Defaulting to `torch.float32`."
            )

768
769
770
771
772
773
774
775
776
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

777
778
779
        if quantization_config is not None and not isinstance(quantization_config, PipelineQuantizationConfig):
            raise ValueError("`quantization_config` must be an instance of `PipelineQuantizationConfig`.")

780
781
782
783
784
785
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

786
787
788
789
790
791
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

792
        if device_map is not None and not is_accelerate_available():
793
            raise NotImplementedError(
794
795
796
797
798
799
800
801
802
                "Using `device_map` requires the `accelerate` library. Please install it using: `pip install accelerate`."
            )

        if device_map is not None and not isinstance(device_map, str):
            raise ValueError("`device_map` must be a string.")

        if device_map is not None and device_map not in SUPPORTED_DEVICE_MAP:
            raise NotImplementedError(
                f"{device_map} not supported. Supported strategies are: {', '.join(SUPPORTED_DEVICE_MAP)}"
803
804
            )

805
806
807
808
        if device_map is not None and device_map in SUPPORTED_DEVICE_MAP:
            if is_accelerate_version("<", "0.28.0"):
                raise NotImplementedError("Device placement requires `accelerate` version `0.28.0` or later.")

809
810
811
812
813
814
        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

Marc Sun's avatar
Marc Sun committed
815
816
817
818
819
820
        if dduf_file:
            if custom_pipeline:
                raise NotImplementedError("Custom pipelines are not supported with DDUF at the moment.")
            if load_connected_pipeline:
                raise NotImplementedError("Connected pipelines are not supported with DDUF at the moment.")

821
822
823
        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
Patrick von Platen's avatar
Patrick von Platen committed
824
825
826
827
828
            if pretrained_model_name_or_path.count("/") > 1:
                raise ValueError(
                    f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}"'
                    " is neither a valid local path nor a valid repo id. Please check the parameter."
                )
829
            cached_folder = cls.download(
830
831
832
833
834
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
835
                token=token,
836
                revision=revision,
837
                from_flax=from_flax,
838
                use_safetensors=use_safetensors,
839
                use_onnx=use_onnx,
840
                custom_pipeline=custom_pipeline,
841
                custom_revision=custom_revision,
842
                variant=variant,
Marc Sun's avatar
Marc Sun committed
843
                dduf_file=dduf_file,
844
                load_connected_pipeline=load_connected_pipeline,
845
                **kwargs,
846
847
848
849
            )
        else:
            cached_folder = pretrained_model_name_or_path

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
        # The variant filenames can have the legacy sharding checkpoint format that we check and throw
        # a warning if detected.
        if variant is not None and _check_legacy_sharding_variant_format(folder=cached_folder, variant=variant):
            warn_msg = (
                f"Warning: The repository contains sharded checkpoints for variant '{variant}' maybe in a deprecated format. "
                "Please check your files carefully:\n\n"
                "- Correct format example: diffusion_pytorch_model.fp16-00003-of-00003.safetensors\n"
                "- Deprecated format example: diffusion_pytorch_model-00001-of-00002.fp16.safetensors\n\n"
                "If you find any files in the deprecated format:\n"
                "1. Remove all existing checkpoint files for this variant.\n"
                "2. Re-obtain the correct files by running `save_pretrained()`.\n\n"
                "This will ensure you're using the most up-to-date and compatible checkpoint format."
            )
            logger.warning(warn_msg)

Marc Sun's avatar
Marc Sun committed
865
866
867
868
869
870
871
872
873
874
875
        dduf_entries = None
        if dduf_file:
            dduf_file_path = os.path.join(cached_folder, dduf_file)
            dduf_entries = read_dduf_file(dduf_file_path)
            # The reader contains already all the files needed, no need to check it again
            cached_folder = ""

        config_dict = cls.load_config(cached_folder, dduf_entries=dduf_entries)

        if dduf_file:
            _maybe_raise_error_for_incorrect_transformers(config_dict)
876

Patrick von Platen's avatar
Patrick von Platen committed
877
878
879
        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

880
        # 2. Define which model components should load variants
881
882
883
884
        # We retrieve the information by matching whether variant model checkpoints exist in the subfolders.
        # Example: `diffusion_pytorch_model.safetensors` -> `diffusion_pytorch_model.fp16.safetensors`
        # with variant being `"fp16"`.
        model_variants = _identify_model_variants(folder=cached_folder, variant=variant, config=config_dict)
885
886
887
        if len(model_variants) == 0 and variant is not None:
            error_message = f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
            raise ValueError(error_message)
888

889
        # 3. Load the pipeline class, if using custom module then load it from the hub
890
        # if we load from explicit class, let's use it
891
892
893
        custom_pipeline, custom_class_name = _resolve_custom_pipeline_and_cls(
            folder=cached_folder, config=config_dict, custom_pipeline=custom_pipeline
        )
894
        pipeline_class = _get_pipeline_class(
895
            cls,
896
            config=config_dict,
897
898
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
899
            class_name=custom_class_name,
900
901
            cache_dir=cache_dir,
            revision=custom_revision,
902
        )
903

904
905
906
        if device_map is not None and pipeline_class._load_connected_pipes:
            raise NotImplementedError("`device_map` is not yet supported for connected pipelines.")

907
        # DEPRECATED: To be removed in 1.0.0
908
909
910
911
912
913
914
        # we are deprecating the `StableDiffusionInpaintPipelineLegacy` pipeline which gets loaded
        # when a user requests for a `StableDiffusionInpaintPipeline` with `diffusers` version being <= 0.5.1.
        _maybe_raise_warning_for_inpainting(
            pipeline_class=pipeline_class,
            pretrained_model_name_or_path=pretrained_model_name_or_path,
            config=config_dict,
        )
915

916
917
918
        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

919
920
921
922
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
923
        expected_types = pipeline_class._get_signature_types()
924
925
926
927
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

928
929
930
931
932
933
        # define init kwargs and make sure that optional component modules are filtered out
        init_kwargs = {
            k: init_dict.pop(k)
            for k in optional_kwargs
            if k in init_dict and k not in pipeline_class._optional_components
        }
934
935
936
937
938
939
940
941
942
943
944
945
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

946
947
948
949
950
951
952
953
        # Special case: safety_checker must be loaded separately when using `from_flax`
        if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
            raise NotImplementedError(
                "The safety checker cannot be automatically loaded when loading weights `from_flax`."
                " Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
                " separately if you need it."
            )

954
        # 5. Throw nice warnings / errors for fast accelerate loading
955
956
957
958
959
960
961
962
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        # import it here to avoid circular import
        from diffusers import pipelines

963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
        # 6. device map delegation
        final_device_map = None
        if device_map is not None:
            final_device_map = _get_final_device_map(
                device_map=device_map,
                pipeline_class=pipeline_class,
                passed_class_obj=passed_class_obj,
                init_dict=init_dict,
                library=library,
                max_memory=max_memory,
                torch_dtype=torch_dtype,
                cached_folder=cached_folder,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )

        # 7. Load each module in the pipeline
        current_device_map = None
984
        _maybe_warn_for_wrong_component_in_quant_config(init_dict, quantization_config)
985
        for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
986
            # 7.1 device_map shenanigans
987
988
989
990
991
992
993
994
995
            if final_device_map is not None:
                if isinstance(final_device_map, dict) and len(final_device_map) > 0:
                    component_device = final_device_map.get(name, None)
                    if component_device is not None:
                        current_device_map = {"": component_device}
                    else:
                        current_device_map = None
                elif isinstance(final_device_map, str):
                    current_device_map = final_device_map
996

997
            # 7.2 - now that JAX/Flax is an official framework of the library, we might load from Flax names
998
            class_name = class_name[4:] if class_name.startswith("Flax") else class_name
999

1000
            # 7.3 Define all importable classes
1001
            is_pipeline_module = hasattr(pipelines, library_name)
1002
            importable_classes = ALL_IMPORTABLE_CLASSES
1003
1004
            loaded_sub_model = None

1005
            # 7.4 Use passed sub model or load class_name from library_name
1006
            if name in passed_class_obj:
1007
1008
1009
1010
1011
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )
1012
1013
1014

                loaded_sub_model = passed_class_obj[name]
            else:
1015
                # load sub model
1016
1017
1018
1019
1020
                sub_model_dtype = (
                    torch_dtype.get(name, torch_dtype.get("default", torch.float32))
                    if isinstance(torch_dtype, dict)
                    else torch_dtype
                )
1021
1022
1023
1024
1025
1026
1027
                loaded_sub_model = load_sub_model(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
1028
                    torch_dtype=sub_model_dtype,
1029
1030
                    provider=provider,
                    sess_options=sess_options,
1031
                    device_map=current_device_map,
1032
1033
1034
                    max_memory=max_memory,
                    offload_folder=offload_folder,
                    offload_state_dict=offload_state_dict,
1035
1036
1037
1038
1039
1040
                    model_variants=model_variants,
                    name=name,
                    from_flax=from_flax,
                    variant=variant,
                    low_cpu_mem_usage=low_cpu_mem_usage,
                    cached_folder=cached_folder,
1041
                    use_safetensors=use_safetensors,
Marc Sun's avatar
Marc Sun committed
1042
                    dduf_entries=dduf_entries,
1043
                    provider_options=provider_options,
1044
                    quantization_config=quantization_config,
1045
                )
1046
1047
1048
                logger.info(
                    f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
                )
1049
1050
1051

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

1052
        # 8. Handle connected pipelines.
1053
        if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
1054
1055
1056
1057
1058
1059
1060
            init_kwargs = _update_init_kwargs_with_connected_pipeline(
                init_kwargs=init_kwargs,
                passed_pipe_kwargs=passed_pipe_kwargs,
                passed_class_objs=passed_class_obj,
                folder=cached_folder,
                **kwargs_copied,
            )
1061

1062
        # 9. Potentially add passed objects if expected
1063
1064
1065
1066
1067
1068
1069
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
1070
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - set(optional_kwargs)
1071
1072
1073
1074
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
        # 10. Type checking init arguments
        for kw, arg in init_kwargs.items():
            # Too complex to validate with type annotation alone
            if "scheduler" in kw:
                continue
            # Many tokenizer annotations don't include its "Fast" variant, so skip this
            # e.g T5Tokenizer but not T5TokenizerFast
            elif "tokenizer" in kw:
                continue
            elif (
                arg is not None  # Skip if None
                and not expected_types[kw] == (inspect.Signature.empty,)  # Skip if no type annotations
                and not _is_valid_type(arg, expected_types[kw])  # Check type
            ):
                logger.warning(f"Expected types for {kw}: {expected_types[kw]}, got {_get_detailed_type(arg)}.")

        # 11. Instantiate the pipeline
1092
        model = pipeline_class(**init_kwargs)
1093

1094
        # 12. Save where the model was instantiated from
1095
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1096
1097
        if device_map is not None:
            setattr(model, "hf_device_map", final_device_map)
1098
1099
        if quantization_config is not None:
            setattr(model, "quantization_config", quantization_config)
1100
1101
        return model

1102
1103
1104
1105
    @property
    def name_or_path(self) -> str:
        return getattr(self.config, "_name_or_path", None)

1106
1107
1108
1109
1110
1111
1112
    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        [`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
        Accelerate's module hooks.
        """
Aryan's avatar
Aryan committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
        from ..hooks.group_offloading import _get_group_onload_device

        # When apply group offloading at the leaf_level, we're in the same situation as accelerate's sequential
        # offloading. We need to return the onload device of the group offloading hooks so that the intermediates
        # required for computation (latents, prompt embeddings, etc.) can be created on the correct device.
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue
            try:
                return _get_group_onload_device(model)
            except ValueError:
                pass

1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
                continue

            if not hasattr(model, "_hf_hook"):
                return self.device
            for module in model.modules():
                if (
                    hasattr(module, "_hf_hook")
                    and hasattr(module._hf_hook, "execution_device")
                    and module._hf_hook.execution_device is not None
                ):
                    return torch.device(module._hf_hook.execution_device)
        return self.device

1141
1142
1143
1144
1145
1146
    def remove_all_hooks(self):
        r"""
        Removes all hooks that were added when using `enable_sequential_cpu_offload` or `enable_model_cpu_offload`.
        """
        for _, model in self.components.items():
            if isinstance(model, torch.nn.Module) and hasattr(model, "_hf_hook"):
1147
                accelerate.hooks.remove_hook_from_module(model, recurse=True)
1148
1149
        self._all_hooks = []

1150
    def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = None):
1151
1152
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
1153
1154
1155
1156
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the accelerator when its
        `forward` method is called, and the model remains in accelerator until the next model runs. Memory savings are
        lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution
        of the `unet`.
1157
1158
1159
1160

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
1161
            device (`torch.Device` or `str`, *optional*, defaults to None):
1162
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
1163
                automatically detect the available accelerator and use.
1164
        """
Aryan's avatar
Aryan committed
1165
1166
        self._maybe_raise_error_if_group_offload_active(raise_error=True)

1167
1168
1169
1170
1171
1172
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_model_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_model_cpu_offload()`."
            )

1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
        if self.model_cpu_offload_seq is None:
            raise ValueError(
                "Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set."
            )

        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

1183
1184
        self.remove_all_hooks()

1185
1186
1187
1188
1189
        if device is None:
            device = get_device()
            if device == "cpu":
                raise RuntimeError("`enable_model_cpu_offload` requires accelerator, but not found")

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1200
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1201
1202
1203

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1204
        self._offload_device = device
1205

1206
        self.to("cpu", silence_dtype_warnings=True)
1207
        empty_device_cache(device.type)
1208
1209
1210

        all_model_components = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}

1211
        self._all_hooks = []
1212
1213
        hook = None
        for model_str in self.model_cpu_offload_seq.split("->"):
1214
            model = all_model_components.pop(model_str, None)
1215

1216
1217
1218
            if not isinstance(model, torch.nn.Module):
                continue

1219
1220
1221
1222
1223
1224
1225
1226
            # This is because the model would already be placed on a CUDA device.
            _, _, is_loaded_in_8bit_bnb = _check_bnb_status(model)
            if is_loaded_in_8bit_bnb:
                logger.info(
                    f"Skipping the hook placement for the {model.__class__.__name__} as it is loaded in `bitsandbytes` 8bit."
                )
                continue

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
            _, hook = cpu_offload_with_hook(model, device, prev_module_hook=hook)
            self._all_hooks.append(hook)

        # CPU offload models that are not in the seq chain unless they are explicitly excluded
        # these models will stay on CPU until maybe_free_model_hooks is called
        # some models cannot be in the seq chain because they are iteratively called, such as controlnet
        for name, model in all_model_components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                _, hook = cpu_offload_with_hook(model, device)
                self._all_hooks.append(hook)

    def maybe_free_model_hooks(self):
        r"""
1245
1246
1247
1248
1249
1250
1251
1252
1253
        Method that performs the following:
        - Offloads all components.
        - Removes all model hooks that were added when using `enable_model_cpu_offload`, and then applies them again.
          In case the model has not been offloaded, this function is a no-op.
        - Resets stateful diffusers hooks of denoiser components if they were added with
          [`~hooks.HookRegistry.register_hook`].

        Make sure to add this function to the end of the `__call__` function of your pipeline so that it functions
        correctly when applying `enable_model_cpu_offload`.
1254
        """
1255
1256
1257
1258
        for component in self.components.values():
            if hasattr(component, "_reset_stateful_cache"):
                component._reset_stateful_cache()

1259
1260
1261
1262
1263
        if not hasattr(self, "_all_hooks") or len(self._all_hooks) == 0:
            # `enable_model_cpu_offload` has not be called, so silently do nothing
            return

        # make sure the model is in the same state as before calling it
1264
        self.enable_model_cpu_offload(device=getattr(self, "_offload_device", "cuda"))
1265

1266
    def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = None):
1267
        r"""
1268
1269
        Offloads all models to CPU using 🤗 Accelerate, significantly reducing memory usage. When called, the state
        dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
1270
1271
        and then moved to `torch.device('meta')` and loaded to accelerator only when their specific submodule has its
        `forward` method called. Offloading happens on a submodule basis. Memory savings are higher than with
1272
        `enable_model_cpu_offload`, but performance is lower.
1273
1274
1275
1276

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
1277
            device (`torch.Device` or `str`, *optional*, defaults to None):
1278
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
1279
                automatically detect the available accelerator and use.
1280
        """
Aryan's avatar
Aryan committed
1281
1282
        self._maybe_raise_error_if_group_offload_active(raise_error=True)

1283
1284
1285
1286
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
1287
        self.remove_all_hooks()
1288

1289
1290
1291
1292
1293
1294
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_sequential_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_sequential_cpu_offload()`."
            )

1295
1296
1297
1298
1299
        if device is None:
            device = get_device()
            if device == "cpu":
                raise RuntimeError("`enable_sequential_cpu_offload` requires accelerator, but not found")

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1310
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1311
1312
1313

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1314
        self._offload_device = device
1315
1316

        if self.device.type != "cpu":
1317
            orig_device_type = self.device.type
1318
            self.to("cpu", silence_dtype_warnings=True)
1319
            empty_device_cache(orig_device_type)
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332

        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                # make sure to offload buffers if not all high level weights
                # are of type nn.Module
                offload_buffers = len(model._parameters) > 0
                cpu_offload(model, device, offload_buffers=offload_buffers)

1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
    def enable_group_offload(
        self,
        onload_device: torch.device,
        offload_device: torch.device = torch.device("cpu"),
        offload_type: str = "block_level",
        num_blocks_per_group: Optional[int] = None,
        non_blocking: bool = False,
        use_stream: bool = False,
        record_stream: bool = False,
        low_cpu_mem_usage=False,
        offload_to_disk_path: Optional[str] = None,
        exclude_modules: Optional[Union[str, List[str]]] = None,
    ) -> None:
        r"""
        Applies group offloading to the internal layers of a torch.nn.Module. To understand what group offloading is,
        and where it is beneficial, we need to first provide some context on how other supported offloading methods
        work.

        Typically, offloading is done at two levels:
        - Module-level: In Diffusers, this can be enabled using the `ModelMixin::enable_model_cpu_offload()` method. It
        works by offloading each component of a pipeline to the CPU for storage, and onloading to the accelerator
        device when needed for computation. This method is more memory-efficient than keeping all components on the
        accelerator, but the memory requirements are still quite high. For this method to work, one needs memory
        equivalent to size of the model in runtime dtype + size of largest intermediate activation tensors to be able
        to complete the forward pass.
        - Leaf-level: In Diffusers, this can be enabled using the `ModelMixin::enable_sequential_cpu_offload()` method.
          It
        works by offloading the lowest leaf-level parameters of the computation graph to the CPU for storage, and
        onloading only the leafs to the accelerator device for computation. This uses the lowest amount of accelerator
        memory, but can be slower due to the excessive number of device synchronizations.

        Group offloading is a middle ground between the two methods. It works by offloading groups of internal layers,
        (either `torch.nn.ModuleList` or `torch.nn.Sequential`). This method uses lower memory than module-level
        offloading. It is also faster than leaf-level/sequential offloading, as the number of device synchronizations
        is reduced.

        Another supported feature (for CUDA devices with support for asynchronous data transfer streams) is the ability
        to overlap data transfer and computation to reduce the overall execution time compared to sequential
        offloading. This is enabled using layer prefetching with streams, i.e., the layer that is to be executed next
        starts onloading to the accelerator device while the current layer is being executed - this increases the
        memory requirements slightly. Note that this implementation also supports leaf-level offloading but can be made
        much faster when using streams.

        Args:
            onload_device (`torch.device`):
                The device to which the group of modules are onloaded.
            offload_device (`torch.device`, defaults to `torch.device("cpu")`):
                The device to which the group of modules are offloaded. This should typically be the CPU. Default is
                CPU.
            offload_type (`str` or `GroupOffloadingType`, defaults to "block_level"):
                The type of offloading to be applied. Can be one of "block_level" or "leaf_level". Default is
                "block_level".
            offload_to_disk_path (`str`, *optional*, defaults to `None`):
                The path to the directory where parameters will be offloaded. Setting this option can be useful in
                limited RAM environment settings where a reasonable speed-memory trade-off is desired.
            num_blocks_per_group (`int`, *optional*):
                The number of blocks per group when using offload_type="block_level". This is required when using
                offload_type="block_level".
            non_blocking (`bool`, defaults to `False`):
                If True, offloading and onloading is done with non-blocking data transfer.
            use_stream (`bool`, defaults to `False`):
                If True, offloading and onloading is done asynchronously using a CUDA stream. This can be useful for
                overlapping computation and data transfer.
            record_stream (`bool`, defaults to `False`): When enabled with `use_stream`, it marks the current tensor
                as having been used by this stream. It is faster at the expense of slightly more memory usage. Refer to
                the [PyTorch official docs](https://pytorch.org/docs/stable/generated/torch.Tensor.record_stream.html)
                more details.
            low_cpu_mem_usage (`bool`, defaults to `False`):
                If True, the CPU memory usage is minimized by pinning tensors on-the-fly instead of pre-pinning them.
                This option only matters when using streamed CPU offloading (i.e. `use_stream=True`). This can be
                useful when the CPU memory is a bottleneck but may counteract the benefits of using streams.
            exclude_modules (`Union[str, List[str]]`, defaults to `None`): List of modules to exclude from offloading.

        Example:
            ```python
            >>> from diffusers import DiffusionPipeline
            >>> import torch

            >>> pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=torch.bfloat16)

            >>> pipe.enable_group_offload(
            ...     onload_device=torch.device("cuda"),
            ...     offload_device=torch.device("cpu"),
            ...     offload_type="leaf_level",
            ...     use_stream=True,
            ... )
            >>> image = pipe("a beautiful sunset").images[0]
            ```
        """
        from ..hooks import apply_group_offloading

        if isinstance(exclude_modules, str):
            exclude_modules = [exclude_modules]
        elif exclude_modules is None:
            exclude_modules = []

        unknown = set(exclude_modules) - self.components.keys()
        if unknown:
            logger.info(
                f"The following modules are not present in pipeline: {', '.join(unknown)}. Ignore if this is expected."
            )

        group_offload_kwargs = {
            "onload_device": onload_device,
            "offload_device": offload_device,
            "offload_type": offload_type,
            "num_blocks_per_group": num_blocks_per_group,
            "non_blocking": non_blocking,
            "use_stream": use_stream,
            "record_stream": record_stream,
            "low_cpu_mem_usage": low_cpu_mem_usage,
            "offload_to_disk_path": offload_to_disk_path,
        }
        for name, component in self.components.items():
            if name not in exclude_modules and isinstance(component, torch.nn.Module):
                if hasattr(component, "enable_group_offload"):
                    component.enable_group_offload(**group_offload_kwargs)
                else:
                    apply_group_offloading(module=component, **group_offload_kwargs)

        if exclude_modules:
            for module_name in exclude_modules:
                module = getattr(self, module_name, None)
                if module is not None and isinstance(module, torch.nn.Module):
                    module.to(onload_device)
                    logger.debug(f"Placed `{module_name}` on {onload_device} device as it was in `exclude_modules`.")

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
    def reset_device_map(self):
        r"""
        Resets the device maps (if any) to None.
        """
        if self.hf_device_map is None:
            return
        else:
            self.remove_all_hooks()
            for name, component in self.components.items():
                if isinstance(component, torch.nn.Module):
                    component.to("cpu")
            self.hf_device_map = None

1473
    @classmethod
1474
    @validate_hf_hub_args
1475
1476
    def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
        r"""
Steven Liu's avatar
Steven Liu committed
1477
        Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
1478
1479

        Parameters:
Steven Liu's avatar
Steven Liu committed
1480
            pretrained_model_name (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
1481
                A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
Steven Liu's avatar
Steven Liu committed
1482
                hosted on the Hub.
1483
1484
1485
            custom_pipeline (`str`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1486
                    - A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
Steven Liu's avatar
Steven Liu committed
1487
1488
                      pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                      the custom pipeline.
1489
1490

                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
1491
1492
1493
1494
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current `main` branch of GitHub.
1495

Steven Liu's avatar
Steven Liu committed
1496
1497
                    - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
1498

Steven Liu's avatar
Steven Liu committed
1499
                > [!WARNING] > 🧪 This is an experimental feature and may change in the future.
1500

Steven Liu's avatar
Steven Liu committed
1501
1502
                For more information on how to load and create custom pipelines, take a look at [How to contribute a
                community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
1503
1504
1505
1506

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
1507

1508
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1509
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1510
1511
1512
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
1513
1514
1515
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1516
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1517
1518
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1519
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1520
1521
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
Steven Liu's avatar
Steven Liu committed
1522
            custom_revision (`str`, *optional*, defaults to `"main"`):
1523
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
1524
1525
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
1526
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1527
1528
1529
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1530
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1531
1532
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
Marc Sun's avatar
Marc Sun committed
1533
1534
            dduf_file(`str`, *optional*):
                Load weights from the specified DDUF file.
1535
1536
1537
1538
1539
1540
1541
1542
1543
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            use_onnx (`bool`, *optional*, defaults to `False`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
1544
1545
1546
1547
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom pipelines and components defined on the Hub in their own files. This
                option should only be set to `True` for repositories you trust and in which you have read the code, as
                it will execute code present on the Hub on your local machine.
Steven Liu's avatar
Steven Liu committed
1548
1549
1550
1551

        Returns:
            `os.PathLike`:
                A path to the downloaded pipeline.
1552

Steven Liu's avatar
Steven Liu committed
1553
1554
        > [!TIP] > To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in
        with `hf > auth login
1555
1556

        """
1557
        cache_dir = kwargs.pop("cache_dir", None)
1558
1559
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
1560
1561
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
1562
1563
1564
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
1565
        custom_revision = kwargs.pop("custom_revision", None)
1566
        variant = kwargs.pop("variant", None)
1567
        use_safetensors = kwargs.pop("use_safetensors", None)
1568
        use_onnx = kwargs.pop("use_onnx", None)
1569
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1570
        trust_remote_code = kwargs.pop("trust_remote_code", False)
Marc Sun's avatar
Marc Sun committed
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
        dduf_file: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_file", None)

        if dduf_file:
            if custom_pipeline:
                raise NotImplementedError("Custom pipelines are not supported with DDUF at the moment.")
            if load_connected_pipeline:
                raise NotImplementedError("Connected pipelines are not supported with DDUF at the moment.")
            return _download_dduf_file(
                pretrained_model_name=pretrained_model_name,
                dduf_file=dduf_file,
                pipeline_class_name=cls.__name__,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )
1588

1589
1590
        allow_pickle = True if (use_safetensors is None or use_safetensors is False) else False
        use_safetensors = use_safetensors if use_safetensors is not None else True
1591
1592
1593
1594

        allow_patterns = None
        ignore_patterns = None

1595
        model_info_call_error: Optional[Exception] = None
1596
1597
        if not local_files_only:
            try:
1598
                info = model_info(pretrained_model_name, token=token, revision=revision)
1599
            except (HfHubHTTPError, OfflineModeIsEnabled, requests.ConnectionError, httpx.NetworkError) as e:
1600
                logger.warning(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
1601
                local_files_only = True
1602
                model_info_call_error = e  # save error to reraise it if model is not cached locally
1603

1604
        if not local_files_only:
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
            config_file = hf_hub_download(
                pretrained_model_name,
                cls.config_name,
                cache_dir=cache_dir,
                revision=revision,
                proxies=proxies,
                force_download=force_download,
                token=token,
            )
            config_dict = cls._dict_from_json_file(config_file)
            ignore_filenames = config_dict.pop("_ignore_files", [])

1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
            filenames = {sibling.rfilename for sibling in info.siblings}
            if variant is not None and _check_legacy_sharding_variant_format(filenames=filenames, variant=variant):
                warn_msg = (
                    f"Warning: The repository contains sharded checkpoints for variant '{variant}' maybe in a deprecated format. "
                    "Please check your files carefully:\n\n"
                    "- Correct format example: diffusion_pytorch_model.fp16-00003-of-00003.safetensors\n"
                    "- Deprecated format example: diffusion_pytorch_model-00001-of-00002.fp16.safetensors\n\n"
                    "If you find any files in the deprecated format:\n"
                    "1. Remove all existing checkpoint files for this variant.\n"
                    "2. Re-obtain the correct files by running `save_pretrained()`.\n\n"
                    "This will ensure you're using the most up-to-date and compatible checkpoint format."
                )
                logger.warning(warn_msg)

1631
            filenames = set(filenames) - set(ignore_filenames)
1632
1633
            if revision in DEPRECATED_REVISION_ARGS and version.parse(
                version.parse(__version__).base_version
Patrick von Platen's avatar
Patrick von Platen committed
1634
            ) >= version.parse("0.22.0"):
1635
                warn_deprecated_model_variant(pretrained_model_name, token, variant, revision, filenames)
1636

1637
            custom_components, folder_names = _get_custom_components_and_folders(
1638
                pretrained_model_name, config_dict, filenames, variant
1639
            )
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
            custom_class_name = None
            if custom_pipeline is None and isinstance(config_dict["_class_name"], (list, tuple)):
                custom_pipeline = config_dict["_class_name"][0]
                custom_class_name = config_dict["_class_name"][1]

            load_pipe_from_hub = custom_pipeline is not None and f"{custom_pipeline}.py" in filenames
            load_components_from_hub = len(custom_components) > 0

            if load_pipe_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {custom_pipeline}.py which must be executed to correctly "
                    f"load the model. You can inspect the repository content at https://hf.co/{pretrained_model_name}/blob/main/{custom_pipeline}.py.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

            if load_components_from_hub and not trust_remote_code:
                raise ValueError(
1657
1658
                    f"The repository for {pretrained_model_name} contains custom code in {'.py, '.join([os.path.join(k, v) for k, v in custom_components.items()])} which must be executed to correctly "
                    f"load the model. You can inspect the repository content at {', '.join([f'https://hf.co/{pretrained_model_name}/{k}/{v}.py' for k, v in custom_components.items()])}.\n"
1659
1660
1661
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

1662
1663
            # retrieve passed components that should not be downloaded
            pipeline_class = _get_pipeline_class(
1664
1665
1666
1667
                cls,
                config_dict,
                load_connected_pipeline=load_connected_pipeline,
                custom_pipeline=custom_pipeline,
1668
1669
1670
                repo_id=pretrained_model_name if load_pipe_from_hub else None,
                hub_revision=revision,
                class_name=custom_class_name,
1671
1672
                cache_dir=cache_dir,
                revision=custom_revision,
1673
1674
1675
1676
            )
            expected_components, _ = cls._get_signature_keys(pipeline_class)
            passed_components = [k for k in expected_components if k in kwargs]

1677
1678
1679
1680
            # retrieve the names of the folders containing model weights
            model_folder_names = {
                os.path.split(f)[0] for f in filter_model_files(filenames) if os.path.split(f)[0] in folder_names
            }
1681
1682
1683
1684
            # retrieve all patterns that should not be downloaded and error out when needed
            ignore_patterns = _get_ignore_patterns(
                passed_components,
                model_folder_names,
1685
                filenames,
1686
1687
1688
1689
1690
1691
1692
                use_safetensors,
                from_flax,
                allow_pickle,
                use_onnx,
                pipeline_class._is_onnx,
                variant,
            )
1693

1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
            model_filenames, variant_filenames = variant_compatible_siblings(
                filenames, variant=variant, ignore_patterns=ignore_patterns
            )

            # all filenames compatible with variant will be added
            allow_patterns = list(model_filenames)

            # allow all patterns from non-model folders
            # this enables downloading schedulers, tokenizers, ...
            allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
            # add custom component files
            allow_patterns += [f"{k}/{f}.py" for k, f in custom_components.items()]
            # add custom pipeline file
            allow_patterns += [f"{custom_pipeline}.py"] if f"{custom_pipeline}.py" in filenames else []
            # also allow downloading config.json files with the model
            allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
            allow_patterns += [
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                cls.config_name,
                CUSTOM_PIPELINE_FILE_NAME,
            ]

1717
1718
1719
1720
            # Don't download any objects that are passed
            allow_patterns = [
                p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
            ]
1721
1722
1723
1724

            if pipeline_class._load_connected_pipes:
                allow_patterns.append("README.md")

1725
1726
            # Don't download index files of forbidden patterns either
            ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]
1727
1728
1729
1730
1731
            re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
            re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

            expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
            expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
1732

1733
1734
            snapshot_folder = Path(config_file).parent
            pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
1735

1736
            if pipeline_is_cached and not force_download:
1737
1738
1739
                # if the pipeline is cached, we can directly return it
                # else call snapshot_download
                return snapshot_folder
1740

1741
1742
1743
        user_agent = {"pipeline_class": cls.__name__}
        if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
            user_agent["custom_pipeline"] = custom_pipeline
1744
1745

        # download all allow_patterns - ignore_patterns
1746
        try:
1747
            cached_folder = snapshot_download(
1748
1749
1750
1751
                pretrained_model_name,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
1752
                token=token,
1753
1754
1755
1756
1757
                revision=revision,
                allow_patterns=allow_patterns,
                ignore_patterns=ignore_patterns,
                user_agent=user_agent,
            )
1758

1759
            cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
1760
            cls_name = cls_name[4:] if isinstance(cls_name, str) and cls_name.startswith("Flax") else cls_name
1761

1762
1763
            diffusers_module = importlib.import_module(__name__.split(".")[0])
            pipeline_class = getattr(diffusers_module, cls_name, None) if isinstance(cls_name, str) else None
1764
1765

            if pipeline_class is not None and pipeline_class._load_connected_pipes:
1766
1767
1768
                modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
                connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
                for connected_pipe_repo_id in connected_pipes:
1769
1770
1771
1772
1773
                    download_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "local_files_only": local_files_only,
1774
                        "token": token,
1775
1776
1777
1778
                        "variant": variant,
                        "use_safetensors": use_safetensors,
                    }
                    DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)
1779
1780
1781

            return cached_folder

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
        except FileNotFoundError:
            # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
            # This can happen in two cases:
            # 1. If the user passed `local_files_only=True`                    => we raise the error directly
            # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
            if model_info_call_error is None:
                # 1. user passed `local_files_only=True`
                raise
            else:
                # 2. we forced `local_files_only=True` when `model_info` failed
                raise EnvironmentError(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1793
                    f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occurred"
1794
1795
1796
                    " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                    " above."
                ) from model_info_call_error
1797

1798
1799
    @classmethod
    def _get_signature_keys(cls, obj):
1800
1801
1802
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
1803
        expected_modules = set(required_parameters.keys()) - {"self"}
1804
1805
1806
1807
1808
1809
1810

        optional_names = list(optional_parameters)
        for name in optional_names:
            if name in cls._optional_components:
                expected_modules.add(name)
                optional_parameters.remove(name)

1811
        return sorted(expected_modules), sorted(optional_parameters)
1812

1813
1814
1815
1816
1817
1818
1819
1820
    @classmethod
    def _get_signature_types(cls):
        signature_types = {}
        for k, v in inspect.signature(cls.__init__).parameters.items():
            if inspect.isclass(v.annotation):
                signature_types[k] = (v.annotation,)
            elif get_origin(v.annotation) == Union:
                signature_types[k] = get_args(v.annotation)
Dhruv Nair's avatar
Dhruv Nair committed
1821
1822
            elif get_origin(v.annotation) in [List, Dict, list, dict]:
                signature_types[k] = (v.annotation,)
1823
1824
1825
1826
            else:
                logger.warning(f"cannot get type annotation for Parameter {k} of {cls}.")
        return signature_types

1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
    @property
    def parameters(self) -> Dict[str, Any]:
        r"""
        The `self.parameters` property can be useful to run different pipelines with the same weights and
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the optional parameters needed to initialize the pipeline.

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

        >>> text2img = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components, **text2img.parameters)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components, **text2img.parameters)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        pipeline_parameters = {
            k: self.config[k] for k in self.config.keys() if not k.startswith("_") and k in optional_parameters
        }

        return pipeline_parameters

1857
1858
1859
1860
    @property
    def components(self) -> Dict[str, Any]:
        r"""
        The `self.components` property can be useful to run different pipelines with the same weights and
Steven Liu's avatar
Steven Liu committed
1861
1862
1863
1864
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the modules needed to initialize the pipeline.
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

1875
        >>> text2img = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
1876
1877
1878
1879
1880
1881
1882
1883
1884
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

1885
1886
1887
        actual = sorted(set(components.keys()))
        expected = sorted(expected_modules)
        if actual != expected:
1888
1889
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
1890
                f" {expected} to be defined, but {actual} are defined."
1891
1892
1893
1894
1895
1896
1897
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
Steven Liu's avatar
Steven Liu committed
1898
        Convert a NumPy image or a batch of images to a PIL image.
1899
        """
Patrick von Platen's avatar
Patrick von Platen committed
1900
        return numpy_to_pil(images)
1901

lsb's avatar
lsb committed
1902
    @torch.compiler.disable
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs

1921
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
1922
        r"""
1923
1924
1925
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
        option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
        up during training is not guaranteed.
1926

Steven Liu's avatar
Steven Liu committed
1927
1928
        > [!WARNING] > ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient
        attention takes > precedent.
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import DiffusionPipeline
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")
        >>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        >>> # Workaround for not accepting attention shape using VAE for Flash Attention
        >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
        ```
1949
        """
1950
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
1951
1952
1953

    def disable_xformers_memory_efficient_attention(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1954
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
1955
1956
1957
        """
        self.set_use_memory_efficient_attention_xformers(False)

1958
1959
1960
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
1961
1962
1963
1964
1965
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
1966
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
1967
1968
1969
1970

            for child in module.children():
                fn_recursive_set_mem_eff(child)

1971
1972
1973
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
1974

1975
1976
        for module in modules:
            fn_recursive_set_mem_eff(module)
1977
1978
1979

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
1980
        Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor
1981
1982
1983
        in slices to compute attention in several steps. For more than one attention head, the computation is performed
        sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.

Steven Liu's avatar
Steven Liu committed
1984
1985
1986
1987
        > [!WARNING] > ⚠️ Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA)
        from PyTorch > 2.0 or xFormers. These attention computations are already very memory efficient so you won't
        need to enable > this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious
        slow downs!
1988
1989
1990
1991

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
1992
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
1993
1994
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
1995
1996
1997
1998
1999
2000
2001
2002

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained(
2003
        ...     "stable-diffusion-v1-5/stable-diffusion-v1-5",
2004
2005
2006
2007
2008
2009
2010
2011
        ...     torch_dtype=torch.float16,
        ...     use_safetensors=True,
        ... )

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> pipe.enable_attention_slicing()
        >>> image = pipe(prompt).images[0]
        ```
2012
2013
2014
2015
2016
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
2017
2018
        Disable sliced attention computation. If `enable_attention_slicing` was previously called, attention is
        computed in one step.
2019
2020
2021
2022
2023
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
2024
2025
2026
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
2027

2028
2029
        for module in modules:
            module.set_attention_slice(slice_size)
2030

2031
2032
2033
    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
2034
2035
        Create a new pipeline from a given pipeline. This method is useful to create a new pipeline from the existing
        pipeline components without reallocating additional memory.
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049

        Arguments:
            pipeline (`DiffusionPipeline`):
                The pipeline from which to create a new pipeline.

        Returns:
            `DiffusionPipeline`:
                A new pipeline with the same weights and configurations as `pipeline`.

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline

2050
        >>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
2051
2052
2053
2054
2055
        >>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe)
        ```
        """

        original_config = dict(pipeline.config)
2056
        torch_dtype = kwargs.pop("torch_dtype", torch.float32)
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093

        # derive the pipeline class to instantiate
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)

        if custom_pipeline is not None:
            pipeline_class = _get_custom_pipeline_class(custom_pipeline, revision=custom_revision)
        else:
            pipeline_class = cls

        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        # true_optional_modules are optional components with default value in signature so it is ok not to pass them to `__init__`
        # e.g. `image_encoder` for StableDiffusionPipeline
        parameters = inspect.signature(cls.__init__).parameters
        true_optional_modules = set(
            {k for k, v in parameters.items() if v.default != inspect._empty and k in expected_modules}
        )

        # get the class of each component based on its type hint
        # e.g. {"unet": UNet2DConditionModel, "text_encoder": CLIPTextMode}
        component_types = pipeline_class._get_signature_types()

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

        original_class_obj = {}
        for name, component in pipeline.components.items():
            if name in expected_modules and name not in passed_class_obj:
                # for model components, we will not switch over if the class does not matches the type hint in the new pipeline's signature
                if (
                    not isinstance(component, ModelMixin)
                    or type(component) in component_types[name]
                    or (component is None and name in cls._optional_components)
                ):
                    original_class_obj[name] = component
                else:
2094
                    logger.warning(
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
                        f"component {name} is not switched over to new pipeline because type does not match the expected."
                        f" {name} is {type(component)} while the new pipeline expect {component_types[name]}."
                        f" please pass the component of the correct type to the new pipeline. `from_pipe(..., {name}={name})`"
                    )

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k in original_config.keys()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by pipeline is stored as its private attribute
        # (i.e. when the original pipeline was also instantiated with `from_pipe` from another pipeline that has this config)
        # in this case, we will pass them as optional arguments if they can be accepted by the new pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        pipeline_kwargs = {
            **passed_class_obj,
            **original_class_obj,
            **passed_pipe_kwargs,
            **original_pipe_kwargs,
            **kwargs,
        }

        # store unused config as private attribute in the new pipeline
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": v for k, v in original_config.items() if k not in pipeline_kwargs
        }

YiYi Xu's avatar
YiYi Xu committed
2132
2133
2134
2135
2136
        optional_components = (
            pipeline._optional_components
            if hasattr(pipeline, "_optional_components") and pipeline._optional_components
            else []
        )
2137
        missing_modules = (
YiYi Xu's avatar
YiYi Xu committed
2138
            set(expected_modules) - set(optional_components) - set(pipeline_kwargs.keys()) - set(true_optional_modules)
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
        )

        if len(missing_modules) > 0:
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
            )

        new_pipeline = pipeline_class(**pipeline_kwargs)
        if pretrained_model_name_or_path is not None:
            new_pipeline.register_to_config(_name_or_path=pretrained_model_name_or_path)
        new_pipeline.register_to_config(**unused_original_config)

        if torch_dtype is not None:
            new_pipeline.to(dtype=torch_dtype)

        return new_pipeline

Aryan's avatar
Aryan committed
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
    def _maybe_raise_error_if_group_offload_active(
        self, raise_error: bool = False, module: Optional[torch.nn.Module] = None
    ) -> bool:
        from ..hooks.group_offloading import _is_group_offload_enabled

        components = self.components.values() if module is None else [module]
        components = [component for component in components if isinstance(component, torch.nn.Module)]
        for component in components:
            if _is_group_offload_enabled(component):
                if raise_error:
                    raise ValueError(
                        "You are trying to apply model/sequential CPU offloading to a pipeline that contains components "
                        "with group offloading enabled. This is not supported. Please disable group offloading for "
                        "components of the pipeline to use other offloading methods."
                    )
                return True
        return False

2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184

class StableDiffusionMixin:
    r"""
    Helper for DiffusionPipeline with vae and unet.(mainly for LDM such as stable diffusion)
    """

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
2185
2186
2187
2188
2189
2190
        depr_message = f"Calling `enable_vae_slicing()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.enable_slicing()`."
        deprecate(
            "enable_vae_slicing",
            "0.40.0",
            depr_message,
        )
2191
2192
2193
2194
2195
2196
2197
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
2198
2199
2200
2201
2202
2203
        depr_message = f"Calling `disable_vae_slicing()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.disable_slicing()`."
        deprecate(
            "disable_vae_slicing",
            "0.40.0",
            depr_message,
        )
2204
2205
2206
2207
2208
2209
2210
2211
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
2212
2213
2214
2215
2216
2217
        depr_message = f"Calling `enable_vae_tiling()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.enable_tiling()`."
        deprecate(
            "enable_vae_tiling",
            "0.40.0",
            depr_message,
        )
2218
2219
2220
2221
2222
2223
2224
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
2225
2226
2227
2228
2229
2230
        depr_message = f"Calling `disable_vae_tiling()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.disable_tiling()`."
        deprecate(
            "disable_vae_tiling",
            "0.40.0",
            depr_message,
        )
2231
2232
2233
        self.vae.disable_tiling()

    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
2234
        r"""Enables the FreeU mechanism as in https://huggingface.co/papers/2309.11497.
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

    def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """
2261
2262
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
2263

Steven Liu's avatar
Steven Liu committed
2264
        > [!WARNING] > This API is 🧪 experimental.
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.
        """
        self.fusing_unet = False
        self.fusing_vae = False

        if unet:
            self.fusing_unet = True
            self.unet.fuse_qkv_projections()
            self.unet.set_attn_processor(FusedAttnProcessor2_0())

        if vae:
            if not isinstance(self.vae, AutoencoderKL):
                raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")

            self.fusing_vae = True
            self.vae.fuse_qkv_projections()
            self.vae.set_attn_processor(FusedAttnProcessor2_0())

    def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """Disable QKV projection fusion if enabled.

Steven Liu's avatar
Steven Liu committed
2289
        > [!WARNING] > This API is 🧪 experimental.
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.

        """
        if unet:
            if not self.fusing_unet:
                logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
            else:
                self.unet.unfuse_qkv_projections()
                self.fusing_unet = False

        if vae:
            if not self.fusing_vae:
                logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
            else:
                self.vae.unfuse_qkv_projections()
                self.fusing_vae = False