scheduling_pndm.py 21.9 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 Zhejiang University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

17
import math
18
from typing import List, Literal, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
19

20
import numpy as np
21
import torch
22

23
from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
24
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
25
26


27
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
28
def betas_for_alpha_bar(
29
30
31
32
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
33
    """
Patrick von Platen's avatar
Patrick von Platen committed
34
35
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
36

37
38
39
40
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
41
42
43
44
45
46
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
47
48

    Returns:
49
50
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
51
    """
YiYi Xu's avatar
YiYi Xu committed
52
    if alpha_transform_type == "cosine":
53

YiYi Xu's avatar
YiYi Xu committed
54
55
56
57
58
59
60
61
62
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
63
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
64
65
66
67
68

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
69
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
70
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
Patrick von Platen committed
71
72
73


class PNDMScheduler(SchedulerMixin, ConfigMixin):
74
    """
75
76
    `PNDMScheduler` uses pseudo numerical methods for diffusion models such as the Runge-Kutta and linear multi-step
    method.
77

78
79
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
80
81

    Args:
82
83
84
85
86
87
88
89
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
90
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        skip_prk_steps (`bool`, defaults to `False`):
            Allows the scheduler to skip the Runge-Kutta steps defined in the original paper as being required before
            PLMS steps.
        set_alpha_to_one (`bool`, defaults to `False`):
            Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
            there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the alpha value at step 0.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process)
            or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf)
            paper).
        timestep_spacing (`str`, defaults to `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
108
            An offset added to the inference steps, as required by some model families.
109
110
    """

Kashif Rasul's avatar
Kashif Rasul committed
111
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
112
    order = 1
113

114
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
115
116
    def __init__(
        self,
Partho's avatar
Partho committed
117
118
119
120
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
121
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
122
        skip_prk_steps: bool = False,
123
        set_alpha_to_one: bool = False,
124
        prediction_type: str = "epsilon",
125
        timestep_spacing: str = "leading",
126
        steps_offset: int = 0,
Patrick von Platen's avatar
Patrick von Platen committed
127
    ):
128
        if trained_betas is not None:
129
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
130
        elif beta_schedule == "linear":
131
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
132
133
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
134
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
Patrick von Platen's avatar
Patrick von Platen committed
135
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
136
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
137
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
138
        else:
139
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
Patrick von Platen's avatar
Patrick von Platen committed
140
141

        self.alphas = 1.0 - self.betas
142
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
Patrick von Platen's avatar
Patrick von Platen committed
143

144
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
145

146
147
148
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

Patrick von Platen's avatar
Patrick von Platen committed
149
        # For now we only support F-PNDM, i.e. the runge-kutta method
Quentin Gallouédec's avatar
Quentin Gallouédec committed
150
        # For more information on the algorithm please take a look at the paper: https://huggingface.co/papers/2202.09778
Patrick von Platen's avatar
Patrick von Platen committed
151
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
152
153
154
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
Patrick von Platen committed
155
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
156
        self.counter = 0
157
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
158
159
        self.ets = []

160
161
        # setable values
        self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
162
        self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
163
164
        self.prk_timesteps = None
        self.plms_timesteps = None
Patrick von Platen's avatar
Patrick von Platen committed
165
        self.timesteps = None
166

167
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
168
        """
169
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
170
171
172

        Args:
            num_inference_steps (`int`):
173
174
175
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
176
        """
177

178
        self.num_inference_steps = num_inference_steps
Quentin Gallouédec's avatar
Quentin Gallouédec committed
179
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        if self.config.timestep_spacing == "linspace":
            self._timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps).round().astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()
            self._timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            self._timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio))[::-1].astype(
                np.int64
            )
            self._timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
202
203
204
205
206

        if self.config.skip_prk_steps:
            # for some models like stable diffusion the prk steps can/should be skipped to
            # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
            # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
207
            self.prk_timesteps = np.array([])
208
209
210
            self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[
                ::-1
            ].copy()
211
212
213
214
        else:
            prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile(
                np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
            )
215
216
217
218
            self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy()
            self.plms_timesteps = self._timesteps[:-3][
                ::-1
            ].copy()  # we copy to avoid having negative strides which are not supported by torch.from_numpy
Patrick von Platen's avatar
Patrick von Platen committed
219

220
221
        timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64)
        self.timesteps = torch.from_numpy(timesteps).to(device)
Patrick von Platen's avatar
Patrick von Platen committed
222

223
        self.ets = []
Patrick von Platen's avatar
Patrick von Platen committed
224
        self.counter = 0
225
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
226

Patrick von Platen's avatar
Patrick von Platen committed
227
228
    def step(
        self,
229
        model_output: torch.Tensor,
Patrick von Platen's avatar
Patrick von Platen committed
230
        timestep: int,
231
        sample: torch.Tensor,
232
233
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
234
        """
235
236
237
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise), and calls [`~PNDMScheduler.step_prk`]
        or [`~PNDMScheduler.step_plms`] depending on the internal variable `counter`.
238
239

        Args:
240
            model_output (`torch.Tensor`):
241
242
243
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
244
            sample (`torch.Tensor`):
245
246
247
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
248

249
        Returns:
250
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
251
252
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
253
254

        """
255
        if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps:
256
            return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
257
        else:
258
            return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
259

260
261
    def step_prk(
        self,
262
        model_output: torch.Tensor,
263
        timestep: int,
264
        sample: torch.Tensor,
265
266
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
267
        """
268
269
270
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the Runge-Kutta method. It performs four forward passes to approximate the solution to the differential
        equation.
271
272

        Args:
273
            model_output (`torch.Tensor`):
274
275
276
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
277
            sample (`torch.Tensor`):
278
279
280
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
281
282

        Returns:
283
284
285
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
286

Nathan Lambert's avatar
Nathan Lambert committed
287
        """
288
289
290
291
292
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
293
        diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2
294
        prev_timestep = timestep - diff_to_prev
Patrick von Platen's avatar
Patrick von Platen committed
295
        timestep = self.prk_timesteps[self.counter // 4 * 4]
Patrick von Platen's avatar
Patrick von Platen committed
296

Patrick von Platen's avatar
Patrick von Platen committed
297
        if self.counter % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
298
299
            self.cur_model_output += 1 / 6 * model_output
            self.ets.append(model_output)
300
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
301
        elif (self.counter - 1) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
302
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
303
        elif (self.counter - 2) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
304
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
305
        elif (self.counter - 3) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
306
307
            model_output = self.cur_model_output + 1 / 6 * model_output
            self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
308

Patrick von Platen's avatar
Patrick von Platen committed
309
310
311
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

Patrick von Platen's avatar
Patrick von Platen committed
312
313
314
        prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
        self.counter += 1

315
316
317
318
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
319

320
321
    def step_plms(
        self,
322
        model_output: torch.Tensor,
323
        timestep: int,
324
        sample: torch.Tensor,
325
326
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
327
        """
328
329
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the linear multistep method. It performs one forward pass multiple times to approximate the solution.
330
331

        Args:
332
            model_output (`torch.Tensor`):
333
334
335
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
336
            sample (`torch.Tensor`):
337
338
339
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
340
341

        Returns:
342
343
344
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
345

Nathan Lambert's avatar
Nathan Lambert committed
346
        """
347
348
349
350
351
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

352
        if not self.config.skip_prk_steps and len(self.ets) < 3:
Patrick von Platen's avatar
Patrick von Platen committed
353
354
355
356
357
358
359
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

360
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
361

362
        if self.counter != 1:
363
            self.ets = self.ets[-3:]
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
            self.ets.append(model_output)
        else:
            prev_timestep = timestep
            timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps

        if len(self.ets) == 1 and self.counter == 0:
            model_output = model_output
            self.cur_sample = sample
        elif len(self.ets) == 1 and self.counter == 1:
            model_output = (model_output + self.ets[-1]) / 2
            sample = self.cur_sample
            self.cur_sample = None
        elif len(self.ets) == 2:
            model_output = (3 * self.ets[-1] - self.ets[-2]) / 2
        elif len(self.ets) == 3:
            model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
        else:
            model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
Patrick von Platen's avatar
Patrick von Platen committed
382

Patrick von Platen's avatar
Patrick von Platen committed
383
384
385
        prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
        self.counter += 1

386
387
388
389
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
390

391
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
392
393
394
395
396
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
397
            sample (`torch.Tensor`):
398
                The input sample.
399
400

        Returns:
401
            `torch.Tensor`:
402
                A scaled input sample.
403
404
405
        """
        return sample

406
    def _get_prev_sample(self, sample, timestep, prev_timestep, model_output):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
407
        # See formula (9) of PNDM paper https://huggingface.co/papers/2202.09778
Patrick von Platen's avatar
Patrick von Platen committed
408
409
410
411
412
413
414
415
416
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
Patrick von Platen's avatar
Patrick von Platen committed
417
        # model_output -> e_θ(x_t, t)
Patrick von Platen's avatar
Patrick von Platen committed
418
        # prev_sample -> x_(t−δ)
419
420
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
421
422
423
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

424
425
426
427
428
429
430
        if self.config.prediction_type == "v_prediction":
            model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
        elif self.config.prediction_type != "epsilon":
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`"
            )

Patrick von Platen's avatar
Patrick von Platen committed
431
432
433
434
435
436
437
        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
438
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
Patrick von Platen's avatar
Patrick von Platen committed
439
440
441
442
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
443
444
445
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )
Patrick von Platen's avatar
Patrick von Platen committed
446
447

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
448

449
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
Partho's avatar
Partho committed
450
451
    def add_noise(
        self,
452
453
        original_samples: torch.Tensor,
        noise: torch.Tensor,
454
        timesteps: torch.IntTensor,
455
    ) -> torch.Tensor:
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
        """
        Add noise to the original samples according to the noise magnitude at each timestep (this is the forward
        diffusion process).

        Args:
            original_samples (`torch.Tensor`):
                The original samples to which noise will be added.
            noise (`torch.Tensor`):
                The noise to add to the samples.
            timesteps (`torch.IntTensor`):
                The timesteps indicating the noise level for each sample.

        Returns:
            `torch.Tensor`:
                The noisy samples.
        """
472
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
473
474
475
476
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
477
        timesteps = timesteps.to(original_samples.device)
478

479
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
480
481
482
483
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

484
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
485
486
487
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
488
489
490
491

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
492
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
493
        return self.config.num_train_timesteps