scheduling_pndm.py 7.76 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
15
import math
Patrick von Platen's avatar
Patrick von Platen committed
16
17

from ..configuration_utils import ConfigMixin
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from .scheduling_utils import SchedulerMixin


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function,
    which defines the cumulative product of (1-beta) over time from t = [0,1].

    :param num_diffusion_timesteps: the number of betas to produce.
    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that
                      part of the diffusion process.
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
42
43
44
45
46
47
48
49
50
51
52
53


class PNDMScheduler(SchedulerMixin, ConfigMixin):
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        tensor_format="np",
    ):
        super().__init__()
54
        self.register_to_config(
Patrick von Platen's avatar
Patrick von Platen committed
55
56
57
58
59
60
61
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
        )

        if beta_schedule == "linear":
62
            self.betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
63
64
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
65
            self.betas = betas_for_alpha_bar(timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
66
67
68
69
70
71
72
73
74
75
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

Patrick von Platen's avatar
Patrick von Platen committed
76
77
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
78
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
79
80
81
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
finish  
Patrick von Platen committed
82
        self.cur_residual = 0
83
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
84
        self.ets = []
Patrick von Platen's avatar
Patrick von Platen committed
85
        self.prk_time_steps = {}
Patrick von Platen's avatar
Patrick von Platen committed
86
        self.time_steps = {}
Patrick von Platen's avatar
Patrick von Platen committed
87
        self.set_prk_mode()
Patrick von Platen's avatar
Patrick von Platen committed
88

Patrick von Platen's avatar
Patrick von Platen committed
89
90
91
    def get_prk_time_steps(self, num_inference_steps):
        if num_inference_steps in self.prk_time_steps:
            return self.prk_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
92

93
        inference_step_times = list(range(0, self.config.timesteps, self.config.timesteps // num_inference_steps))
Patrick von Platen's avatar
Patrick von Platen committed
94

Patrick von Platen's avatar
Patrick von Platen committed
95
        prk_time_steps = np.array(inference_step_times[-self.pndm_order :]).repeat(2) + np.tile(
96
            np.array([0, self.config.timesteps // num_inference_steps // 2]), self.pndm_order
97
        )
Patrick von Platen's avatar
Patrick von Platen committed
98
        self.prk_time_steps[num_inference_steps] = list(reversed(prk_time_steps[:-1].repeat(2)[1:-1]))
Patrick von Platen's avatar
Patrick von Platen committed
99

Patrick von Platen's avatar
Patrick von Platen committed
100
        return self.prk_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
101

Patrick von Platen's avatar
Patrick von Platen committed
102
103
104
    def get_time_steps(self, num_inference_steps):
        if num_inference_steps in self.time_steps:
            return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
105

106
        inference_step_times = list(range(0, self.config.timesteps, self.config.timesteps // num_inference_steps))
Patrick von Platen's avatar
Patrick von Platen committed
107
        self.time_steps[num_inference_steps] = list(reversed(inference_step_times[:-3]))
Patrick von Platen's avatar
Patrick von Platen committed
108

Patrick von Platen's avatar
Patrick von Platen committed
109
        return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
110

Patrick von Platen's avatar
Patrick von Platen committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    def set_prk_mode(self):
        self.mode = "prk"

    def set_plms_mode(self):
        self.mode = "plms"

    def step(self, *args, **kwargs):
        if self.mode == "prk":
            return self.step_prk(*args, **kwargs)
        if self.mode == "plms":
            return self.step_plms(*args, **kwargs)

        raise ValueError(f"mode {self.mode} does not exist.")

125
    def step_prk(self, residual, sample, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
126
        prk_time_steps = self.get_prk_time_steps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
127

Patrick von Platen's avatar
Patrick von Platen committed
128
129
        t_orig = prk_time_steps[t // 4 * 4]
        t_orig_prev = prk_time_steps[min(t + 1, len(prk_time_steps) - 1)]
Patrick von Platen's avatar
Patrick von Platen committed
130

Patrick von Platen's avatar
Patrick von Platen committed
131
132
133
        if t % 4 == 0:
            self.cur_residual += 1 / 6 * residual
            self.ets.append(residual)
134
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
135
136
137
138
139
140
141
        elif (t - 1) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 2) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 3) % 4 == 0:
            residual = self.cur_residual + 1 / 6 * residual
            self.cur_residual = 0
Patrick von Platen's avatar
Patrick von Platen committed
142

Patrick von Platen's avatar
Patrick von Platen committed
143
144
145
146
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

        return self.get_prev_sample(cur_sample, t_orig, t_orig_prev, residual)
Patrick von Platen's avatar
Patrick von Platen committed
147

148
    def step_plms(self, residual, sample, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
149
150
151
152
153
154
155
156
        if len(self.ets) < 3:
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

Patrick von Platen's avatar
Patrick von Platen committed
157
158
        timesteps = self.get_time_steps(num_inference_steps)

Patrick von Platen's avatar
Patrick von Platen committed
159
160
        t_orig = timesteps[t]
        t_orig_prev = timesteps[min(t + 1, len(timesteps) - 1)]
Patrick von Platen's avatar
Patrick von Platen committed
161
162
163
164
        self.ets.append(residual)

        residual = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])

Patrick von Platen's avatar
Patrick von Platen committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        return self.get_prev_sample(sample, t_orig, t_orig_prev, residual)

    def get_prev_sample(self, sample, t_orig, t_orig_prev, residual):
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
        # residual -> e_θ(x_t, t)
        # prev_sample -> x_(t−δ)
180
181
        alpha_prod_t = self.alphas_cumprod[t_orig + 1]
        alpha_prod_t_prev = self.alphas_cumprod[t_orig_prev + 1]
Patrick von Platen's avatar
Patrick von Platen committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
        residual_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
        prev_sample = sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * residual / residual_denom_coeff

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
200
201

    def __len__(self):
202
        return self.config.timesteps