"integration-tests/vscode:/vscode.git/clone" did not exist on "01dacf8e8f6f9357a3840a5beb8ff28042122c04"
scheduling_pndm.py 19 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Zhejiang University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

17
import math
18
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
19

20
import numpy as np
21
import torch
22

23
from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
24
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
25
26


27
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
28
29
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
30
31
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
32

33
34
35
36
37
38
39
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
40
                     prevent singularities.
41
42
43

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
44
    """
45

46
47
48
49
50
51
52
53
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
54
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
Patrick von Platen committed
55
56
57


class PNDMScheduler(SchedulerMixin, ConfigMixin):
58
59
60
61
    """
    Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques,
    namely Runge-Kutta method and a linear multi-step method.

62
63
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
64
65
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
66

67
68
69
70
71
72
73
74
75
    For more details, see the original paper: https://arxiv.org/abs/2202.09778

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
76
77
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
78
79
80
        skip_prk_steps (`bool`):
            allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required
            before plms steps; defaults to `False`.
81
82
83
84
        set_alpha_to_one (`bool`, default `False`):
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
85
        prediction_type (`str`, default `epsilon`, optional):
Patrick von Platen's avatar
Patrick von Platen committed
86
87
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process)
            or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf)
88
89
90
91
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
92
93
94

    """

Kashif Rasul's avatar
Kashif Rasul committed
95
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
96
    order = 1
97

98
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
99
100
    def __init__(
        self,
Partho's avatar
Partho committed
101
102
103
104
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
105
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
106
        skip_prk_steps: bool = False,
107
        set_alpha_to_one: bool = False,
108
        prediction_type: str = "epsilon",
109
        steps_offset: int = 0,
Patrick von Platen's avatar
Patrick von Platen committed
110
    ):
111
        if trained_betas is not None:
112
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
113
        elif beta_schedule == "linear":
114
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
115
116
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
117
118
119
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
Patrick von Platen's avatar
Patrick von Platen committed
120
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
121
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
122
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
123
124
125
126
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
127
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
Patrick von Platen's avatar
Patrick von Platen committed
128

129
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
130

131
132
133
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

Patrick von Platen's avatar
Patrick von Platen committed
134
135
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
136
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
137
138
139
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
Patrick von Platen committed
140
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
141
        self.counter = 0
142
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
143
144
        self.ets = []

145
146
        # setable values
        self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
147
        self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
148
149
        self.prk_timesteps = None
        self.plms_timesteps = None
Patrick von Platen's avatar
Patrick von Platen committed
150
        self.timesteps = None
151

152
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
153
154
155
156
157
158
159
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
160

161
        self.num_inference_steps = num_inference_steps
162
163
164
        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
165
        self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()
166
        self._timesteps += self.config.steps_offset
167
168
169
170
171

        if self.config.skip_prk_steps:
            # for some models like stable diffusion the prk steps can/should be skipped to
            # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
            # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
172
            self.prk_timesteps = np.array([])
173
174
175
            self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[
                ::-1
            ].copy()
176
177
178
179
        else:
            prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile(
                np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
            )
180
181
182
183
            self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy()
            self.plms_timesteps = self._timesteps[:-3][
                ::-1
            ].copy()  # we copy to avoid having negative strides which are not supported by torch.from_numpy
Patrick von Platen's avatar
Patrick von Platen committed
184

185
186
        timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64)
        self.timesteps = torch.from_numpy(timesteps).to(device)
Patrick von Platen's avatar
Patrick von Platen committed
187

188
        self.ets = []
Patrick von Platen's avatar
Patrick von Platen committed
189
        self.counter = 0
190
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
191

Patrick von Platen's avatar
Patrick von Platen committed
192
193
    def step(
        self,
194
        model_output: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
195
        timestep: int,
196
        sample: torch.FloatTensor,
197
198
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
199
200
201
202
203
204
205
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`.

        Args:
206
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
207
            timestep (`int`): current discrete timestep in the diffusion chain.
208
            sample (`torch.FloatTensor`):
209
210
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
211

212
        Returns:
213
214
215
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
216
217

        """
218
        if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps:
219
            return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
220
        else:
221
            return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
222

223
224
    def step_prk(
        self,
225
        model_output: torch.FloatTensor,
226
        timestep: int,
227
        sample: torch.FloatTensor,
228
229
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
230
231
232
        """
        Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
        solution to the differential equation.
233
234

        Args:
235
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
236
            timestep (`int`): current discrete timestep in the diffusion chain.
237
            sample (`torch.FloatTensor`):
238
239
240
241
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
242
243
            [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
244

Nathan Lambert's avatar
Nathan Lambert committed
245
        """
246
247
248
249
250
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
251
        diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2
252
        prev_timestep = timestep - diff_to_prev
Patrick von Platen's avatar
Patrick von Platen committed
253
        timestep = self.prk_timesteps[self.counter // 4 * 4]
Patrick von Platen's avatar
Patrick von Platen committed
254

Patrick von Platen's avatar
Patrick von Platen committed
255
        if self.counter % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
256
257
            self.cur_model_output += 1 / 6 * model_output
            self.ets.append(model_output)
258
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
259
        elif (self.counter - 1) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
260
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
261
        elif (self.counter - 2) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
262
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
263
        elif (self.counter - 3) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
264
265
            model_output = self.cur_model_output + 1 / 6 * model_output
            self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
266

Patrick von Platen's avatar
Patrick von Platen committed
267
268
269
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

Patrick von Platen's avatar
Patrick von Platen committed
270
271
272
        prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
        self.counter += 1

273
274
275
276
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
277

278
279
    def step_plms(
        self,
280
        model_output: torch.FloatTensor,
281
        timestep: int,
282
        sample: torch.FloatTensor,
283
284
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
285
286
287
        """
        Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
        times to approximate the solution.
288
289

        Args:
290
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
291
            timestep (`int`): current discrete timestep in the diffusion chain.
292
            sample (`torch.FloatTensor`):
293
294
295
296
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
297
298
            [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
299

Nathan Lambert's avatar
Nathan Lambert committed
300
        """
301
302
303
304
305
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

306
        if not self.config.skip_prk_steps and len(self.ets) < 3:
Patrick von Platen's avatar
Patrick von Platen committed
307
308
309
310
311
312
313
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

314
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
315

316
        if self.counter != 1:
317
            self.ets = self.ets[-3:]
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
            self.ets.append(model_output)
        else:
            prev_timestep = timestep
            timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps

        if len(self.ets) == 1 and self.counter == 0:
            model_output = model_output
            self.cur_sample = sample
        elif len(self.ets) == 1 and self.counter == 1:
            model_output = (model_output + self.ets[-1]) / 2
            sample = self.cur_sample
            self.cur_sample = None
        elif len(self.ets) == 2:
            model_output = (3 * self.ets[-1] - self.ets[-2]) / 2
        elif len(self.ets) == 3:
            model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
        else:
            model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
Patrick von Platen's avatar
Patrick von Platen committed
336

Patrick von Platen's avatar
Patrick von Platen committed
337
338
339
        prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
        self.counter += 1

340
341
342
343
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
344

345
346
347
348
349
350
351
352
353
354
355
356
357
    def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

358
    def _get_prev_sample(self, sample, timestep, prev_timestep, model_output):
Patrick von Platen's avatar
Patrick von Platen committed
359
360
361
362
363
364
365
366
367
368
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
Patrick von Platen's avatar
Patrick von Platen committed
369
        # model_output -> e_θ(x_t, t)
Patrick von Platen's avatar
Patrick von Platen committed
370
        # prev_sample -> x_(t−δ)
371
372
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
373
374
375
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

376
377
378
379
380
381
382
        if self.config.prediction_type == "v_prediction":
            model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
        elif self.config.prediction_type != "epsilon":
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`"
            )

Patrick von Platen's avatar
Patrick von Platen committed
383
384
385
386
387
388
389
        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
390
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
Patrick von Platen's avatar
Patrick von Platen committed
391
392
393
394
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
395
396
397
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )
Patrick von Platen's avatar
Patrick von Platen committed
398
399

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
400

401
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
Partho's avatar
Partho committed
402
403
    def add_noise(
        self,
404
405
406
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
407
    ) -> torch.FloatTensor:
408
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
409
        alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
410
        timesteps = timesteps.to(original_samples.device)
411

412
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
413
414
415
416
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

417
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
418
419
420
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
421
422
423
424

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
425
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
426
        return self.config.num_train_timesteps