scheduling_pndm.py 5.14 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

import numpy as np

from ..configuration_utils import ConfigMixin
from .scheduling_utils import SchedulerMixin, betas_for_alpha_bar, linear_beta_schedule


class PNDMScheduler(SchedulerMixin, ConfigMixin):
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        tensor_format="np",
    ):
        super().__init__()
        self.register(
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
        )
        self.timesteps = int(timesteps)

        if beta_schedule == "linear":
            self.betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
            self.betas = betas_for_alpha_bar(
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

    #        self.register_buffer("betas", betas.to(torch.float32))
    #        self.register_buffer("alphas", alphas.to(torch.float32))
    #        self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32))

    #        alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
    # TODO(PVP) - check how much of these is actually necessary!
    # LDM only uses "fixed_small"; glide seems to use a weird mix of the two, ...
    # https://github.com/openai/glide-text2im/blob/69b530740eb6cef69442d6180579ef5ba9ef063e/glide_text2im/gaussian_diffusion.py#L246
    #        variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
    #        if variance_type == "fixed_small":
    #            log_variance = torch.log(variance.clamp(min=1e-20))
    #        elif variance_type == "fixed_large":
    #            log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))
    #
    #
    #        self.register_buffer("log_variance", log_variance.to(torch.float32))

    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
            return self.one
        return self.alphas_cumprod[time_step]

    def step(self, img, t_start, t_end, model, ets):
#        img_next = self.method(img_n, t_start, t_end, model, self.alphas_cump, self.ets)
#def gen_order_4(img, t, t_next, model, alphas_cump, ets):
        t_next, t = t_start, t_end

        t_list = [t, (t+t_next)/2, t_next]
        alphas_cump = self.alphas_cumprod
        if len(ets) > 2:
            noise_ = model(img.to("cuda"), t.to("cuda"))
            noise_ = noise_.to("cpu")
            ets.append(noise_)
            noise = (1 / 24) * (55 * ets[-1] - 59 * ets[-2] + 37 * ets[-3] - 9 * ets[-4])
        else:
            noise = self.runge_kutta(img, t_list, model, alphas_cump, ets)

        img_next = self.transfer(img.to("cpu"), t, t_next, noise, alphas_cump)
        return img_next, ets

    def runge_kutta(self, x, t_list, model, alphas_cump, ets):
        model = model.to("cuda")
        x = x.to("cpu")

        e_1 = model(x.to("cuda"), t_list[0].to("cuda"))
        e_1 = e_1.to("cpu")
        ets.append(e_1)
        x_2 = self.transfer(x, t_list[0], t_list[1], e_1, alphas_cump)

        e_2 = model(x_2.to("cuda"), t_list[1].to("cuda"))
        e_2 = e_2.to("cpu")
        x_3 = self.transfer(x, t_list[0], t_list[1], e_2, alphas_cump)

        e_3 = model(x_3.to("cuda"), t_list[1].to("cuda"))
        e_3 = e_3.to("cpu")
        x_4 = self.transfer(x, t_list[0], t_list[2], e_3, alphas_cump)

        e_4 = model(x_4.to("cuda"), t_list[2].to("cuda"))
        e_4 = e_4.to("cpu")

        et = (1 / 6) * (e_1 + 2 * e_2 + 2 * e_3 + e_4)

        return et

    def transfer(self, x, t, t_next, et, alphas_cump):
        at = alphas_cump[t.long() + 1].view(-1, 1, 1, 1)
        at_next = alphas_cump[t_next.long() + 1].view(-1, 1, 1, 1)

        x_delta = (at_next - at) * ((1 / (at.sqrt() * (at.sqrt() + at_next.sqrt()))) * x - 1 / (at.sqrt() * (((1 - at_next) * at).sqrt() + ((1 - at) * at_next).sqrt())) * et)

        x_next = x + x_delta
        return x_next

    def __len__(self):
        return self.timesteps