scheduling_pndm.py 5.52 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

import numpy as np

from ..configuration_utils import ConfigMixin
from .scheduling_utils import SchedulerMixin, betas_for_alpha_bar, linear_beta_schedule


class PNDMScheduler(SchedulerMixin, ConfigMixin):
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        tensor_format="np",
    ):
        super().__init__()
32
        self.register_to_config(
Patrick von Platen's avatar
Patrick von Platen committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
        )

        if beta_schedule == "linear":
            self.betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
            self.betas = betas_for_alpha_bar(
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

Patrick von Platen's avatar
Patrick von Platen committed
57
58
59
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
        # mainly at equations (12) and (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
60
61
62
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
finish  
Patrick von Platen committed
63
        self.cur_residual = 0
64
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
65
66
67
68
        self.ets = []
        self.warmup_time_steps = {}
        self.time_steps = {}

Patrick von Platen's avatar
Patrick von Platen committed
69
70
71
72
73
74
75
76
77
78
79
    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
            return self.one
        return self.alphas_cumprod[time_step]

Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
    def get_warmup_time_steps(self, num_inference_steps):
        if num_inference_steps in self.warmup_time_steps:
            return self.warmup_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
83

84
        inference_step_times = list(range(0, self.config.timesteps, self.config.timesteps // num_inference_steps))
Patrick von Platen's avatar
Patrick von Platen committed
85

86
        warmup_time_steps = np.array(inference_step_times[-self.pndm_order :]).repeat(2) + np.tile(
87
            np.array([0, self.config.timesteps // num_inference_steps // 2]), self.pndm_order
88
        )
Patrick von Platen's avatar
Patrick von Platen committed
89
90
91
        self.warmup_time_steps[num_inference_steps] = list(reversed(warmup_time_steps[:-1].repeat(2)[1:-1]))

        return self.warmup_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
92

Patrick von Platen's avatar
Patrick von Platen committed
93
94
95
    def get_time_steps(self, num_inference_steps):
        if num_inference_steps in self.time_steps:
            return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
96

97
        inference_step_times = list(range(0, self.config.timesteps, self.config.timesteps // num_inference_steps))
Patrick von Platen's avatar
Patrick von Platen committed
98
        self.time_steps[num_inference_steps] = list(reversed(inference_step_times[:-3]))
Patrick von Platen's avatar
Patrick von Platen committed
99

Patrick von Platen's avatar
Patrick von Platen committed
100
        return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
101

102
    def step_prk(self, residual, sample, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
103
        # TODO(Patrick) - need to rethink whether the "warmup" way is the correct API design here
Patrick von Platen's avatar
Patrick von Platen committed
104
        warmup_time_steps = self.get_warmup_time_steps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
105

Patrick von Platen's avatar
Patrick von Platen committed
106
107
        t_prev = warmup_time_steps[t // 4 * 4]
        t_next = warmup_time_steps[min(t + 1, len(warmup_time_steps) - 1)]
Patrick von Platen's avatar
Patrick von Platen committed
108

Patrick von Platen's avatar
Patrick von Platen committed
109
110
111
        if t % 4 == 0:
            self.cur_residual += 1 / 6 * residual
            self.ets.append(residual)
112
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
113
114
115
116
117
118
119
        elif (t - 1) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 2) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 3) % 4 == 0:
            residual = self.cur_residual + 1 / 6 * residual
            self.cur_residual = 0
Patrick von Platen's avatar
Patrick von Platen committed
120

121
        return self.transfer(self.cur_sample, t_prev, t_next, residual)
Patrick von Platen's avatar
Patrick von Platen committed
122

123
    def step_plms(self, residual, sample, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
124
125
126
127
128
129
130
131
        timesteps = self.get_time_steps(num_inference_steps)

        t_prev = timesteps[t]
        t_next = timesteps[min(t + 1, len(timesteps) - 1)]
        self.ets.append(residual)

        residual = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])

132
        return self.transfer(sample, t_prev, t_next, residual)
Patrick von Platen's avatar
Patrick von Platen committed
133

Patrick von Platen's avatar
Patrick von Platen committed
134
    def transfer(self, x, t, t_next, et):
Patrick von Platen's avatar
Patrick von Platen committed
135
136
137
138
139
        # TODO(Patrick): clean up to be compatible with numpy and give better names

        alphas_cump = self.alphas_cumprod.to(x.device)
        at = alphas_cump[t + 1].view(-1, 1, 1, 1)
        at_next = alphas_cump[t_next + 1].view(-1, 1, 1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
140

141
142
143
144
        x_delta = (at_next - at) * (
            (1 / (at.sqrt() * (at.sqrt() + at_next.sqrt()))) * x
            - 1 / (at.sqrt() * (((1 - at_next) * at).sqrt() + ((1 - at) * at_next).sqrt())) * et
        )
Patrick von Platen's avatar
Patrick von Platen committed
145
146
147
148
149

        x_next = x + x_delta
        return x_next

    def __len__(self):
150
        return self.config.timesteps