scheduling_pndm.py 20.3 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Zhejiang University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

17
import math
18
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
19

20
import numpy as np
21
import torch
22

23
from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
24
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
25
26


27
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
28
29
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
30
31
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
32

33
34
35
36
37
38
39
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
40
                     prevent singularities.
41
42
43

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
44
    """
45

46
47
48
49
50
51
52
53
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
54
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
Patrick von Platen committed
55
56
57


class PNDMScheduler(SchedulerMixin, ConfigMixin):
58
59
60
61
    """
    Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques,
    namely Runge-Kutta method and a linear multi-step method.

62
63
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
64
65
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
66

67
68
69
70
71
72
73
74
75
    For more details, see the original paper: https://arxiv.org/abs/2202.09778

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
76
77
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
78
79
80
        skip_prk_steps (`bool`):
            allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required
            before plms steps; defaults to `False`.
81
82
83
84
        set_alpha_to_one (`bool`, default `False`):
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
85
        prediction_type (`str`, default `epsilon`, optional):
Patrick von Platen's avatar
Patrick von Platen committed
86
87
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process)
            or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf)
88
89
90
        timestep_spacing (`str`, default `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample
            Steps are Flawed](https://arxiv.org/abs/2305.08891) for more information.
91
92
93
94
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
95
96
    """

Kashif Rasul's avatar
Kashif Rasul committed
97
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
98
    order = 1
99

100
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
101
102
    def __init__(
        self,
Partho's avatar
Partho committed
103
104
105
106
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
107
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
108
        skip_prk_steps: bool = False,
109
        set_alpha_to_one: bool = False,
110
        prediction_type: str = "epsilon",
111
        timestep_spacing: str = "leading",
112
        steps_offset: int = 0,
Patrick von Platen's avatar
Patrick von Platen committed
113
    ):
114
        if trained_betas is not None:
115
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
116
        elif beta_schedule == "linear":
117
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
118
119
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
120
121
122
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
Patrick von Platen's avatar
Patrick von Platen committed
123
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
124
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
125
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
126
127
128
129
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
130
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
Patrick von Platen's avatar
Patrick von Platen committed
131

132
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
133

134
135
136
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

Patrick von Platen's avatar
Patrick von Platen committed
137
138
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
139
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
140
141
142
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
Patrick von Platen committed
143
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
144
        self.counter = 0
145
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
146
147
        self.ets = []

148
149
        # setable values
        self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
150
        self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
151
152
        self.prk_timesteps = None
        self.plms_timesteps = None
Patrick von Platen's avatar
Patrick von Platen committed
153
        self.timesteps = None
154

155
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
156
157
158
159
160
161
162
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
163

164
        self.num_inference_steps = num_inference_steps
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            self._timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps).round().astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()
            self._timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            self._timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio))[::-1].astype(
                np.int64
            )
            self._timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
188
189
190
191
192

        if self.config.skip_prk_steps:
            # for some models like stable diffusion the prk steps can/should be skipped to
            # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
            # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
193
            self.prk_timesteps = np.array([])
194
195
196
            self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[
                ::-1
            ].copy()
197
198
199
200
        else:
            prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile(
                np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
            )
201
202
203
204
            self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy()
            self.plms_timesteps = self._timesteps[:-3][
                ::-1
            ].copy()  # we copy to avoid having negative strides which are not supported by torch.from_numpy
Patrick von Platen's avatar
Patrick von Platen committed
205

206
207
        timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64)
        self.timesteps = torch.from_numpy(timesteps).to(device)
Patrick von Platen's avatar
Patrick von Platen committed
208

209
        self.ets = []
Patrick von Platen's avatar
Patrick von Platen committed
210
        self.counter = 0
211
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
212

Patrick von Platen's avatar
Patrick von Platen committed
213
214
    def step(
        self,
215
        model_output: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
216
        timestep: int,
217
        sample: torch.FloatTensor,
218
219
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
220
221
222
223
224
225
226
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`.

        Args:
227
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
228
            timestep (`int`): current discrete timestep in the diffusion chain.
229
            sample (`torch.FloatTensor`):
230
231
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
232

233
        Returns:
234
235
236
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
237
238

        """
239
        if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps:
240
            return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
241
        else:
242
            return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
243

244
245
    def step_prk(
        self,
246
        model_output: torch.FloatTensor,
247
        timestep: int,
248
        sample: torch.FloatTensor,
249
250
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
251
252
253
        """
        Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
        solution to the differential equation.
254
255

        Args:
256
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
257
            timestep (`int`): current discrete timestep in the diffusion chain.
258
            sample (`torch.FloatTensor`):
259
260
261
262
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
263
264
            [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
265

Nathan Lambert's avatar
Nathan Lambert committed
266
        """
267
268
269
270
271
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
272
        diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2
273
        prev_timestep = timestep - diff_to_prev
Patrick von Platen's avatar
Patrick von Platen committed
274
        timestep = self.prk_timesteps[self.counter // 4 * 4]
Patrick von Platen's avatar
Patrick von Platen committed
275

Patrick von Platen's avatar
Patrick von Platen committed
276
        if self.counter % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
277
278
            self.cur_model_output += 1 / 6 * model_output
            self.ets.append(model_output)
279
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
280
        elif (self.counter - 1) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
281
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
282
        elif (self.counter - 2) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
283
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
284
        elif (self.counter - 3) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
285
286
            model_output = self.cur_model_output + 1 / 6 * model_output
            self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
287

Patrick von Platen's avatar
Patrick von Platen committed
288
289
290
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

Patrick von Platen's avatar
Patrick von Platen committed
291
292
293
        prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
        self.counter += 1

294
295
296
297
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
298

299
300
    def step_plms(
        self,
301
        model_output: torch.FloatTensor,
302
        timestep: int,
303
        sample: torch.FloatTensor,
304
305
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
306
307
308
        """
        Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
        times to approximate the solution.
309
310

        Args:
311
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
312
            timestep (`int`): current discrete timestep in the diffusion chain.
313
            sample (`torch.FloatTensor`):
314
315
316
317
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
318
319
            [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
320

Nathan Lambert's avatar
Nathan Lambert committed
321
        """
322
323
324
325
326
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

327
        if not self.config.skip_prk_steps and len(self.ets) < 3:
Patrick von Platen's avatar
Patrick von Platen committed
328
329
330
331
332
333
334
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

335
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
336

337
        if self.counter != 1:
338
            self.ets = self.ets[-3:]
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
            self.ets.append(model_output)
        else:
            prev_timestep = timestep
            timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps

        if len(self.ets) == 1 and self.counter == 0:
            model_output = model_output
            self.cur_sample = sample
        elif len(self.ets) == 1 and self.counter == 1:
            model_output = (model_output + self.ets[-1]) / 2
            sample = self.cur_sample
            self.cur_sample = None
        elif len(self.ets) == 2:
            model_output = (3 * self.ets[-1] - self.ets[-2]) / 2
        elif len(self.ets) == 3:
            model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
        else:
            model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
Patrick von Platen's avatar
Patrick von Platen committed
357

Patrick von Platen's avatar
Patrick von Platen committed
358
359
360
        prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
        self.counter += 1

361
362
363
364
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
365

366
367
368
369
370
371
372
373
374
375
376
377
378
    def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

379
    def _get_prev_sample(self, sample, timestep, prev_timestep, model_output):
Patrick von Platen's avatar
Patrick von Platen committed
380
381
382
383
384
385
386
387
388
389
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
Patrick von Platen's avatar
Patrick von Platen committed
390
        # model_output -> e_θ(x_t, t)
Patrick von Platen's avatar
Patrick von Platen committed
391
        # prev_sample -> x_(t−δ)
392
393
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
394
395
396
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

397
398
399
400
401
402
403
        if self.config.prediction_type == "v_prediction":
            model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
        elif self.config.prediction_type != "epsilon":
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`"
            )

Patrick von Platen's avatar
Patrick von Platen committed
404
405
406
407
408
409
410
        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
411
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
Patrick von Platen's avatar
Patrick von Platen committed
412
413
414
415
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
416
417
418
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )
Patrick von Platen's avatar
Patrick von Platen committed
419
420

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
421

422
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
Partho's avatar
Partho committed
423
424
    def add_noise(
        self,
425
426
427
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
428
    ) -> torch.FloatTensor:
429
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
430
        alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
431
        timesteps = timesteps.to(original_samples.device)
432

433
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
434
435
436
437
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

438
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
439
440
441
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
442
443
444
445

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
446
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
447
        return self.config.num_train_timesteps