scheduling_pndm.py 21.2 KB
Newer Older
1
# Copyright 2024 Zhejiang University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

17
import math
18
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
19

20
import numpy as np
21
import torch
22

23
from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
24
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
25
26


27
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
28
29
30
31
32
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
33
    """
Patrick von Platen's avatar
Patrick von Platen committed
34
35
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
36

37
38
39
40
41
42
43
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
44
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
45
46
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
47
48
49

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
50
    """
YiYi Xu's avatar
YiYi Xu committed
51
    if alpha_transform_type == "cosine":
52

YiYi Xu's avatar
YiYi Xu committed
53
54
55
56
57
58
59
60
61
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
62
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
63
64
65
66
67

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
68
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
69
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
Patrick von Platen committed
70
71
72


class PNDMScheduler(SchedulerMixin, ConfigMixin):
73
    """
74
75
    `PNDMScheduler` uses pseudo numerical methods for diffusion models such as the Runge-Kutta and linear multi-step
    method.
76

77
78
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
79
80

    Args:
81
82
83
84
85
86
87
88
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
89
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        skip_prk_steps (`bool`, defaults to `False`):
            Allows the scheduler to skip the Runge-Kutta steps defined in the original paper as being required before
            PLMS steps.
        set_alpha_to_one (`bool`, defaults to `False`):
            Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
            there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the alpha value at step 0.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process)
            or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf)
            paper).
        timestep_spacing (`str`, defaults to `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
107
            An offset added to the inference steps, as required by some model families.
108
109
    """

Kashif Rasul's avatar
Kashif Rasul committed
110
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
111
    order = 1
112

113
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
114
115
    def __init__(
        self,
Partho's avatar
Partho committed
116
117
118
119
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
120
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
121
        skip_prk_steps: bool = False,
122
        set_alpha_to_one: bool = False,
123
        prediction_type: str = "epsilon",
124
        timestep_spacing: str = "leading",
125
        steps_offset: int = 0,
Patrick von Platen's avatar
Patrick von Platen committed
126
    ):
127
        if trained_betas is not None:
128
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
129
        elif beta_schedule == "linear":
130
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
131
132
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
133
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
Patrick von Platen's avatar
Patrick von Platen committed
134
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
135
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
136
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
137
        else:
138
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
Patrick von Platen's avatar
Patrick von Platen committed
139
140

        self.alphas = 1.0 - self.betas
141
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
Patrick von Platen's avatar
Patrick von Platen committed
142

143
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
144

145
146
147
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

Patrick von Platen's avatar
Patrick von Platen committed
148
        # For now we only support F-PNDM, i.e. the runge-kutta method
Quentin Gallouédec's avatar
Quentin Gallouédec committed
149
        # For more information on the algorithm please take a look at the paper: https://huggingface.co/papers/2202.09778
Patrick von Platen's avatar
Patrick von Platen committed
150
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
151
152
153
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
Patrick von Platen committed
154
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
155
        self.counter = 0
156
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
157
158
        self.ets = []

159
160
        # setable values
        self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
161
        self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
162
163
        self.prk_timesteps = None
        self.plms_timesteps = None
Patrick von Platen's avatar
Patrick von Platen committed
164
        self.timesteps = None
165

166
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
167
        """
168
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
169
170
171

        Args:
            num_inference_steps (`int`):
172
173
174
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
175
        """
176

177
        self.num_inference_steps = num_inference_steps
Quentin Gallouédec's avatar
Quentin Gallouédec committed
178
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        if self.config.timestep_spacing == "linspace":
            self._timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps).round().astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()
            self._timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            self._timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio))[::-1].astype(
                np.int64
            )
            self._timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
201
202
203
204
205

        if self.config.skip_prk_steps:
            # for some models like stable diffusion the prk steps can/should be skipped to
            # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
            # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
206
            self.prk_timesteps = np.array([])
207
208
209
            self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[
                ::-1
            ].copy()
210
211
212
213
        else:
            prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile(
                np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
            )
214
215
216
217
            self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy()
            self.plms_timesteps = self._timesteps[:-3][
                ::-1
            ].copy()  # we copy to avoid having negative strides which are not supported by torch.from_numpy
Patrick von Platen's avatar
Patrick von Platen committed
218

219
220
        timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64)
        self.timesteps = torch.from_numpy(timesteps).to(device)
Patrick von Platen's avatar
Patrick von Platen committed
221

222
        self.ets = []
Patrick von Platen's avatar
Patrick von Platen committed
223
        self.counter = 0
224
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
225

Patrick von Platen's avatar
Patrick von Platen committed
226
227
    def step(
        self,
228
        model_output: torch.Tensor,
Patrick von Platen's avatar
Patrick von Platen committed
229
        timestep: int,
230
        sample: torch.Tensor,
231
232
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
233
        """
234
235
236
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise), and calls [`~PNDMScheduler.step_prk`]
        or [`~PNDMScheduler.step_plms`] depending on the internal variable `counter`.
237
238

        Args:
239
            model_output (`torch.Tensor`):
240
241
242
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
243
            sample (`torch.Tensor`):
244
245
246
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
247

248
        Returns:
249
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
250
251
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
252
253

        """
254
        if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps:
255
            return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
256
        else:
257
            return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
258

259
260
    def step_prk(
        self,
261
        model_output: torch.Tensor,
262
        timestep: int,
263
        sample: torch.Tensor,
264
265
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
266
        """
267
268
269
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the Runge-Kutta method. It performs four forward passes to approximate the solution to the differential
        equation.
270
271

        Args:
272
            model_output (`torch.Tensor`):
273
274
275
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
276
            sample (`torch.Tensor`):
277
278
279
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
280
281

        Returns:
282
283
284
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
285

Nathan Lambert's avatar
Nathan Lambert committed
286
        """
287
288
289
290
291
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
292
        diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2
293
        prev_timestep = timestep - diff_to_prev
Patrick von Platen's avatar
Patrick von Platen committed
294
        timestep = self.prk_timesteps[self.counter // 4 * 4]
Patrick von Platen's avatar
Patrick von Platen committed
295

Patrick von Platen's avatar
Patrick von Platen committed
296
        if self.counter % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
297
298
            self.cur_model_output += 1 / 6 * model_output
            self.ets.append(model_output)
299
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
300
        elif (self.counter - 1) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
301
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
302
        elif (self.counter - 2) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
303
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
304
        elif (self.counter - 3) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
305
306
            model_output = self.cur_model_output + 1 / 6 * model_output
            self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
307

Patrick von Platen's avatar
Patrick von Platen committed
308
309
310
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

Patrick von Platen's avatar
Patrick von Platen committed
311
312
313
        prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
        self.counter += 1

314
315
316
317
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
318

319
320
    def step_plms(
        self,
321
        model_output: torch.Tensor,
322
        timestep: int,
323
        sample: torch.Tensor,
324
325
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
326
        """
327
328
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the linear multistep method. It performs one forward pass multiple times to approximate the solution.
329
330

        Args:
331
            model_output (`torch.Tensor`):
332
333
334
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
335
            sample (`torch.Tensor`):
336
337
338
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
339
340

        Returns:
341
342
343
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
344

Nathan Lambert's avatar
Nathan Lambert committed
345
        """
346
347
348
349
350
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

351
        if not self.config.skip_prk_steps and len(self.ets) < 3:
Patrick von Platen's avatar
Patrick von Platen committed
352
353
354
355
356
357
358
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

359
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
360

361
        if self.counter != 1:
362
            self.ets = self.ets[-3:]
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
            self.ets.append(model_output)
        else:
            prev_timestep = timestep
            timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps

        if len(self.ets) == 1 and self.counter == 0:
            model_output = model_output
            self.cur_sample = sample
        elif len(self.ets) == 1 and self.counter == 1:
            model_output = (model_output + self.ets[-1]) / 2
            sample = self.cur_sample
            self.cur_sample = None
        elif len(self.ets) == 2:
            model_output = (3 * self.ets[-1] - self.ets[-2]) / 2
        elif len(self.ets) == 3:
            model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
        else:
            model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
Patrick von Platen's avatar
Patrick von Platen committed
381

Patrick von Platen's avatar
Patrick von Platen committed
382
383
384
        prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
        self.counter += 1

385
386
387
388
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
389

390
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
391
392
393
394
395
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
396
            sample (`torch.Tensor`):
397
                The input sample.
398
399

        Returns:
400
            `torch.Tensor`:
401
                A scaled input sample.
402
403
404
        """
        return sample

405
    def _get_prev_sample(self, sample, timestep, prev_timestep, model_output):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
406
        # See formula (9) of PNDM paper https://huggingface.co/papers/2202.09778
Patrick von Platen's avatar
Patrick von Platen committed
407
408
409
410
411
412
413
414
415
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
Patrick von Platen's avatar
Patrick von Platen committed
416
        # model_output -> e_θ(x_t, t)
Patrick von Platen's avatar
Patrick von Platen committed
417
        # prev_sample -> x_(t−δ)
418
419
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
420
421
422
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

423
424
425
426
427
428
429
        if self.config.prediction_type == "v_prediction":
            model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
        elif self.config.prediction_type != "epsilon":
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`"
            )

Patrick von Platen's avatar
Patrick von Platen committed
430
431
432
433
434
435
436
        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
437
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
Patrick von Platen's avatar
Patrick von Platen committed
438
439
440
441
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
442
443
444
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )
Patrick von Platen's avatar
Patrick von Platen committed
445
446

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
447

448
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
Partho's avatar
Partho committed
449
450
    def add_noise(
        self,
451
452
        original_samples: torch.Tensor,
        noise: torch.Tensor,
453
        timesteps: torch.IntTensor,
454
    ) -> torch.Tensor:
455
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
456
457
458
459
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
460
        timesteps = timesteps.to(original_samples.device)
461

462
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
463
464
465
466
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

467
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
468
469
470
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
471
472
473
474

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
475
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
476
        return self.config.num_train_timesteps