scheduling_pndm.py 17.9 KB
Newer Older
1
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

17
import math
18
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
19

20
import numpy as np
21
import torch
22

23
from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import deprecate
25
from .scheduling_utils import SchedulerMixin, SchedulerOutput
26
27
28
29


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
30
31
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
32

33
34
35
36
37
38
39
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
40
                     prevent singularities.
41
42
43

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
44
    """
45

46
47
48
49
50
51
52
53
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
54
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
Patrick von Platen committed
55
56
57


class PNDMScheduler(SchedulerMixin, ConfigMixin):
58
59
60
61
    """
    Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques,
    namely Runge-Kutta method and a linear multi-step method.

62
63
64
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
65
    [`~ConfigMixin.from_config`] functions.
66

67
68
69
70
71
72
73
74
75
    For more details, see the original paper: https://arxiv.org/abs/2202.09778

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
76
77
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
78
79
80
        skip_prk_steps (`bool`):
            allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required
            before plms steps; defaults to `False`.
81
82
83
84
85
86
87
88
        set_alpha_to_one (`bool`, default `False`):
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
89
90
91

    """

92
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
93
94
    def __init__(
        self,
Partho's avatar
Partho committed
95
96
97
98
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
99
        trained_betas: Optional[np.ndarray] = None,
Partho's avatar
Partho committed
100
        skip_prk_steps: bool = False,
101
102
        set_alpha_to_one: bool = False,
        steps_offset: int = 0,
103
        **kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
104
    ):
105
106
107
108
109
110
        deprecate(
            "tensor_format",
            "0.5.0",
            "If you're running your code in PyTorch, you can safely remove this argument.",
            take_from=kwargs,
        )
111

112
        if trained_betas is not None:
113
            self.betas = torch.from_numpy(trained_betas)
114
        elif beta_schedule == "linear":
115
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
116
117
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
118
119
120
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
Patrick von Platen's avatar
Patrick von Platen committed
121
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
122
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
123
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
124
125
126
127
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
128
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
Patrick von Platen's avatar
Patrick von Platen committed
129

130
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
131

Patrick von Platen's avatar
Patrick von Platen committed
132
133
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
134
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
135
136
137
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
Patrick von Platen committed
138
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
139
        self.counter = 0
140
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
141
142
        self.ets = []

143
144
        # setable values
        self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
145
        self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
146
147
        self.prk_timesteps = None
        self.plms_timesteps = None
Patrick von Platen's avatar
Patrick von Platen committed
148
        self.timesteps = None
149

150
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None, **kwargs):
151
152
153
154
155
156
157
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
158
159
160
161
        deprecated_offset = deprecate(
            "offset", "0.5.0", "Please pass `steps_offset` to `__init__` instead.", take_from=kwargs
        )
        offset = deprecated_offset or self.config.steps_offset
162

163
        self.num_inference_steps = num_inference_steps
164
165
166
        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
167
168
        self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()
        self._timesteps += offset
169
170
171
172
173

        if self.config.skip_prk_steps:
            # for some models like stable diffusion the prk steps can/should be skipped to
            # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
            # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
174
            self.prk_timesteps = np.array([])
175
176
177
            self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[
                ::-1
            ].copy()
178
179
180
181
        else:
            prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile(
                np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
            )
182
183
184
185
            self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy()
            self.plms_timesteps = self._timesteps[:-3][
                ::-1
            ].copy()  # we copy to avoid having negative strides which are not supported by torch.from_numpy
Patrick von Platen's avatar
Patrick von Platen committed
186

187
188
        timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64)
        self.timesteps = torch.from_numpy(timesteps).to(device)
Patrick von Platen's avatar
Patrick von Platen committed
189

190
        self.ets = []
Patrick von Platen's avatar
Patrick von Platen committed
191
        self.counter = 0
Patrick von Platen's avatar
Patrick von Platen committed
192

Patrick von Platen's avatar
Patrick von Platen committed
193
194
    def step(
        self,
195
        model_output: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
196
        timestep: int,
197
        sample: torch.FloatTensor,
198
199
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
200
201
202
203
204
205
206
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`.

        Args:
207
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
208
            timestep (`int`): current discrete timestep in the diffusion chain.
209
            sample (`torch.FloatTensor`):
210
211
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
212

213
        Returns:
214
215
216
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
217
218

        """
219
        if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps:
220
            return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
221
        else:
222
            return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
223

224
225
    def step_prk(
        self,
226
        model_output: torch.FloatTensor,
227
        timestep: int,
228
        sample: torch.FloatTensor,
229
230
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
231
232
233
        """
        Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
        solution to the differential equation.
234
235

        Args:
236
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
237
            timestep (`int`): current discrete timestep in the diffusion chain.
238
            sample (`torch.FloatTensor`):
239
240
241
242
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
243
244
            [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
245

Nathan Lambert's avatar
Nathan Lambert committed
246
        """
247
248
249
250
251
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
252
        diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2
253
        prev_timestep = timestep - diff_to_prev
Patrick von Platen's avatar
Patrick von Platen committed
254
        timestep = self.prk_timesteps[self.counter // 4 * 4]
Patrick von Platen's avatar
Patrick von Platen committed
255

Patrick von Platen's avatar
Patrick von Platen committed
256
        if self.counter % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
257
258
            self.cur_model_output += 1 / 6 * model_output
            self.ets.append(model_output)
259
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
260
        elif (self.counter - 1) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
261
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
262
        elif (self.counter - 2) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
263
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
264
        elif (self.counter - 3) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
265
266
            model_output = self.cur_model_output + 1 / 6 * model_output
            self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
267

Patrick von Platen's avatar
Patrick von Platen committed
268
269
270
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

Patrick von Platen's avatar
Patrick von Platen committed
271
272
273
        prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
        self.counter += 1

274
275
276
277
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
278

279
280
    def step_plms(
        self,
281
        model_output: torch.FloatTensor,
282
        timestep: int,
283
        sample: torch.FloatTensor,
284
285
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
286
287
288
        """
        Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
        times to approximate the solution.
289
290

        Args:
291
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
292
            timestep (`int`): current discrete timestep in the diffusion chain.
293
            sample (`torch.FloatTensor`):
294
295
296
297
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
298
299
            [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
300

Nathan Lambert's avatar
Nathan Lambert committed
301
        """
302
303
304
305
306
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

307
        if not self.config.skip_prk_steps and len(self.ets) < 3:
Patrick von Platen's avatar
Patrick von Platen committed
308
309
310
311
312
313
314
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

315
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
316

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
        if self.counter != 1:
            self.ets.append(model_output)
        else:
            prev_timestep = timestep
            timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps

        if len(self.ets) == 1 and self.counter == 0:
            model_output = model_output
            self.cur_sample = sample
        elif len(self.ets) == 1 and self.counter == 1:
            model_output = (model_output + self.ets[-1]) / 2
            sample = self.cur_sample
            self.cur_sample = None
        elif len(self.ets) == 2:
            model_output = (3 * self.ets[-1] - self.ets[-2]) / 2
        elif len(self.ets) == 3:
            model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
        else:
            model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
Patrick von Platen's avatar
Patrick von Platen committed
336

Patrick von Platen's avatar
Patrick von Platen committed
337
338
339
        prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
        self.counter += 1

340
341
342
343
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
344

345
    def _get_prev_sample(self, sample, timestep, prev_timestep, model_output):
Patrick von Platen's avatar
Patrick von Platen committed
346
347
348
349
350
351
352
353
354
355
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
Patrick von Platen's avatar
Patrick von Platen committed
356
        # model_output -> e_θ(x_t, t)
Patrick von Platen's avatar
Patrick von Platen committed
357
        # prev_sample -> x_(t−δ)
358
359
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
360
361
362
363
364
365
366
367
368
369
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
370
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
Patrick von Platen's avatar
Patrick von Platen committed
371
372
373
374
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
375
376
377
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )
Patrick von Platen's avatar
Patrick von Platen committed
378
379

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
380

Partho's avatar
Partho committed
381
382
    def add_noise(
        self,
383
384
385
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
Partho's avatar
Partho committed
386
    ) -> torch.Tensor:
387
388
389
390
391
392
        if self.alphas_cumprod.device != original_samples.device:
            self.alphas_cumprod = self.alphas_cumprod.to(original_samples.device)

        if timesteps.device != original_samples.device:
            timesteps = timesteps.to(original_samples.device)

393
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
394
395
396
397
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

398
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
399
400
401
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
402
403
404
405

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
406
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
407
        return self.config.num_train_timesteps