README.md 11.2 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
<p align="center">
    <br>
Anton Lozhkov's avatar
Anton Lozhkov committed
3
    <img src="docs/source/imgs/diffusers_library.jpg" width="400"/>
Patrick von Platen's avatar
Patrick von Platen committed
4
5
6
    <br>
<p>
<p align="center">
Anton Lozhkov's avatar
Anton Lozhkov committed
7
    <a href="https://github.com/huggingface/diffusers/blob/main/LICENSE">
Patrick von Platen's avatar
Patrick von Platen committed
8
9
10
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue">
    </a>
    <a href="https://github.com/huggingface/diffusers/releases">
Anton Lozhkov's avatar
Anton Lozhkov committed
11
        <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg">
Patrick von Platen's avatar
Patrick von Platen committed
12
13
14
15
16
17
18
19
20
21
22
23
24
    </a>
    <a href="CODE_OF_CONDUCT.md">
        <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg">
    </a>
</p>

🤗 Diffusers provides pretrained diffusion models across multiple modalities, such as vision and audio, and serves
as a modular toolbox for inference and training of diffusion models.

More precisely, 🤗 Diffusers offers:

- State-of-the-art diffusion pipelines that can be run in inference with just a couple of lines of code (see [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines)).
- Various noise schedulers that can be used interchangeably for the prefered speed vs. quality trade-off in inference (see [src/diffusers/schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers)).
Suraj Patil's avatar
Suraj Patil committed
25
- Multiple types of models, such as UNet, that can be used as building blocks in an end-to-end diffusion system (see [src/diffusers/models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)).
Patrick von Platen's avatar
up  
Patrick von Platen committed
26
- Training examples to show how to train the most popular diffusion models (see [examples](https://github.com/huggingface/diffusers/tree/main/examples)).
Patrick von Platen's avatar
Patrick von Platen committed
27

Patrick von Platen's avatar
Patrick von Platen committed
28
## Definitions
Patrick von Platen's avatar
Patrick von Platen committed
29

Kashif Rasul's avatar
Kashif Rasul committed
30
**Models**: Neural network that models $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$ (see image below) and is trained end-to-end to *denoise* a noisy input to an image.
Patrick von Platen's avatar
Patrick von Platen committed
31
*Examples*: UNet, Conditioned UNet, 3D UNet, Transformer UNet
Patrick von Platen's avatar
Patrick von Platen committed
32
33
34

![model_diff_1_50](https://user-images.githubusercontent.com/23423619/171610307-dab0cd8b-75da-4d4e-9f5a-5922072e2bb5.png)

Patrick von Platen's avatar
Patrick von Platen committed
35
36
37
**Schedulers**: Algorithm class for both **inference** and **training**.
The class provides functionality to compute previous image according to alpha, beta schedule as well as predict noise for training.
*Examples*: [DDPM](https://arxiv.org/abs/2006.11239), [DDIM](https://arxiv.org/abs/2010.02502), [PNDM](https://arxiv.org/abs/2202.09778), [DEIS](https://arxiv.org/abs/2204.13902)
Patrick von Platen's avatar
Patrick von Platen committed
38
39
40
41

![sampling](https://user-images.githubusercontent.com/23423619/171608981-3ad05953-a684-4c82-89f8-62a459147a07.png)
![training](https://user-images.githubusercontent.com/23423619/171608964-b3260cce-e6b4-4841-959d-7d8ba4b8d1b2.png)

Patrick von Platen's avatar
Patrick von Platen committed
42
43
**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, ...
*Examples*: GLIDE, Latent-Diffusion, Imagen, DALL-E 2
Patrick von Platen's avatar
Patrick von Platen committed
44
45

![imagen](https://user-images.githubusercontent.com/23423619/171609001-c3f2c1c9-f597-4a16-9843-749bf3f9431c.png)
Patrick von Platen's avatar
Patrick von Platen committed
46

Patrick von Platen's avatar
Patrick von Platen committed
47
48
## Philosophy

milyiyo's avatar
milyiyo committed
49
- Readability and clarity is prefered over highly optimized code. A strong importance is put on providing readable, intuitive and elementary code design. *E.g.*, the provided [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers) are separated from the provided [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and provide well-commented code that can be read alongside the original paper.
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
- Diffusers is **modality independent** and focusses on providing pretrained models and tools to build systems that generate **continous outputs**, *e.g.* vision and audio.
- Diffusion models and schedulers are provided as consise, elementary building blocks whereas diffusion pipelines are a collection of end-to-end diffusion systems that can be used out-of-the-box, should stay as close as possible to their original implementation and can include components of other library, such as text-encoders. Examples for diffusion pipelines are [Glide](https://github.com/openai/glide-text2im) and [Latent Diffusion](https://github.com/CompVis/latent-diffusion).

Patrick von Platen's avatar
Patrick von Platen committed
53
54
## Quickstart

Patrick von Platen's avatar
Patrick von Platen committed
55
56
### Installation

Patrick von Platen's avatar
Patrick von Platen committed
57
```
Patrick von Platen's avatar
Patrick von Platen committed
58
pip install diffusers  # should install diffusers 0.0.4
Patrick von Platen's avatar
Patrick von Platen committed
59
```
Patrick von Platen's avatar
Patrick von Platen committed
60

Kashif Rasul's avatar
Kashif Rasul committed
61
### 1. `diffusers` as a toolbox for schedulers and models
Patrick von Platen's avatar
Patrick von Platen committed
62

Patrick von Platen's avatar
Patrick von Platen committed
63
64
`diffusers` is more modularized than `transformers`. The idea is that researchers and engineers can use only parts of the library easily for the own use cases.
It could become a central place for all kinds of models, schedulers, training utils and processors that one can mix and match for one's own use case.
Patrick von Platen's avatar
Patrick von Platen committed
65
Both models and schedulers should be load- and saveable from the Hub.
Patrick von Platen's avatar
Patrick von Platen committed
66

Patrick von Platen's avatar
Patrick von Platen committed
67
68
For more examples see [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers) and [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)

Patrick von Platen's avatar
Patrick von Platen committed
69
#### **Example for [DDPM](https://arxiv.org/abs/2006.11239):**
Patrick von Platen's avatar
Patrick von Platen committed
70
71
72

```python
import torch
Patrick von Platen's avatar
Patrick von Platen committed
73
from diffusers import UNetModel, DDPMScheduler
Patrick von Platen's avatar
Patrick von Platen committed
74
75
import PIL
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
76
import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
77

Patrick von Platen's avatar
Patrick von Platen committed
78
generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
79
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
Patrick von Platen's avatar
Patrick von Platen committed
80
81

# 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
82
noise_scheduler = DDPMScheduler.from_config("fusing/ddpm-lsun-church", tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
83
unet = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
84
85

# 2. Sample gaussian noise
Patrick von Platen's avatar
Patrick von Platen committed
86
image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
87
88
    (1, unet.in_channels, unet.resolution, unet.resolution),
    generator=generator,
Patrick von Platen's avatar
Patrick von Platen committed
89
90
)
image = image.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
91

Patrick von Platen's avatar
Patrick von Platen committed
92
# 3. Denoise
Patrick von Platen's avatar
Patrick von Platen committed
93
94
num_prediction_steps = len(noise_scheduler)
for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
Patrick von Platen's avatar
Patrick von Platen committed
95
96
    # predict noise residual
    with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
97
        residual = unet(image, t)
Patrick von Platen's avatar
Patrick von Platen committed
98

Patrick von Platen's avatar
Patrick von Platen committed
99
100
    # predict previous mean of image x_t-1
    pred_prev_image = noise_scheduler.step(residual, image, t)
Patrick von Platen's avatar
Patrick von Platen committed
101

Patrick von Platen's avatar
Patrick von Platen committed
102
103
104
105
    # optionally sample variance
    variance = 0
    if t > 0:
        noise = torch.randn(image.shape, generator=generator).to(image.device)
Patrick von Platen's avatar
Patrick von Platen committed
106
        variance = noise_scheduler.get_variance(t).sqrt() * noise
Patrick von Platen's avatar
Patrick von Platen committed
107

Patrick von Platen's avatar
Patrick von Platen committed
108
109
    # set current image to prev_image: x_t -> x_t-1
    image = pred_prev_image + variance
Patrick von Platen's avatar
Patrick von Platen committed
110
111
112
113
114
115
116
117
118
119
120

# 5. process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])

# 6. save image
image_pil.save("test.png")
```

Patrick von Platen's avatar
Patrick von Platen committed
121
#### **Example for [DDIM](https://arxiv.org/abs/2010.02502):**
Patrick von Platen's avatar
Patrick von Platen committed
122
123
124
125
126
127

```python
import torch
from diffusers import UNetModel, DDIMScheduler
import PIL
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
128
import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
129
130
131
132
133

generator = torch.manual_seed(0)
torch_device = "cuda" if torch.cuda.is_available() else "cpu"

# 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
134
noise_scheduler = DDIMScheduler.from_config("fusing/ddpm-celeba-hq", tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
135
unet = UNetModel.from_pretrained("fusing/ddpm-celeba-hq").to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
136
137

# 2. Sample gaussian noise
Patrick von Platen's avatar
Patrick von Platen committed
138
image = torch.randn(
Suraj Patil's avatar
Suraj Patil committed
139
140
   (1, unet.in_channels, unet.resolution, unet.resolution),
   generator=generator,
Patrick von Platen's avatar
Patrick von Platen committed
141
142
)
image = image.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
143
144
145
146
147
148

# 3. Denoise                                                                                                                                           
num_inference_steps = 50
eta = 0.0  # <- deterministic sampling

for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
Kashif Rasul's avatar
Kashif Rasul committed
149
    # 1. predict noise residual
Kashif Rasul's avatar
Kashif Rasul committed
150
151
152
    orig_t = noise_scheduler.get_orig_t(t, num_inference_steps)
    with torch.inference_mode():
        residual = unet(image, orig_t)
Kashif Rasul's avatar
Kashif Rasul committed
153
154
155
156
157
158
159
160
161
162
163
164

    # 2. predict previous mean of image x_t-1
    pred_prev_image = noise_scheduler.step(residual, image, t, num_inference_steps, eta)

    # 3. optionally sample variance
    variance = 0
    if eta > 0:
        noise = torch.randn(image.shape, generator=generator).to(image.device)
        variance = noise_scheduler.get_variance(t).sqrt() * eta * noise

    # 4. set current image to prev_image: x_t -> x_t-1
    image = pred_prev_image + variance
Patrick von Platen's avatar
Patrick von Platen committed
165
166

# 5. process image to PIL
Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
170
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
Patrick von Platen's avatar
Patrick von Platen committed
171

Patrick von Platen's avatar
Patrick von Platen committed
172
# 6. save image
Patrick von Platen's avatar
Patrick von Platen committed
173
image_pil.save("test.png")
Patrick von Platen's avatar
Patrick von Platen committed
174
175
```

176
177
178
179
#### **Examples for other modalities:**

[Diffuser](https://diffusion-planning.github.io/) for planning in reinforcement learning: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1TmBmlYeKUZSkUZoJqfBmaicVTKx6nN1R?usp=sharing)

milyiyo's avatar
milyiyo committed
180
### 2. `diffusers` as a collection of popular Diffusion systems (GLIDE, Dalle, ...)
Patrick von Platen's avatar
Patrick von Platen committed
181
182

For more examples see [pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines).
Patrick von Platen's avatar
Patrick von Platen committed
183

Patrick von Platen's avatar
Patrick von Platen committed
184
#### **Example image generation with PNDM**
Patrick von Platen's avatar
Patrick von Platen committed
185
186

```python
Patrick von Platen's avatar
Patrick von Platen committed
187
from diffusers import PNDM, UNetModel, PNDMScheduler
Patrick von Platen's avatar
Patrick von Platen committed
188
189
import PIL.Image
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
190
191
192
193
194
195
import torch

model_id = "fusing/ddim-celeba-hq"

model = UNetModel.from_pretrained(model_id)
scheduler = PNDMScheduler()
Patrick von Platen's avatar
Patrick von Platen committed
196

Patrick von Platen's avatar
Patrick von Platen committed
197
# load model and scheduler
Suraj Patil's avatar
Suraj Patil committed
198
pndm = PNDM(unet=model, noise_scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
199
200

# run pipeline in inference (sample random noise and denoise)
Patrick von Platen's avatar
Patrick von Platen committed
201
with torch.no_grad():
Suraj Patil's avatar
Suraj Patil committed
202
    image = pndm()
Patrick von Platen's avatar
Patrick von Platen committed
203

Patrick von Platen's avatar
Patrick von Platen committed
204
# process image to PIL
Patrick von Platen's avatar
Patrick von Platen committed
205
image_processed = image.cpu().permute(0, 2, 3, 1)
Patrick von Platen's avatar
Patrick von Platen committed
206
207
208
image_processed = (image_processed + 1.0) / 2
image_processed = torch.clamp(image_processed, 0.0, 1.0)
image_processed = image_processed * 255
Patrick von Platen's avatar
Patrick von Platen committed
209
210
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
Patrick von Platen's avatar
Patrick von Platen committed
211
212

# save image
Patrick von Platen's avatar
Patrick von Platen committed
213
image_pil.save("test.png")
Patrick von Platen's avatar
Patrick von Platen committed
214
215
```

Suraj Patil's avatar
Suraj Patil committed
216
#### **Text to Image generation with Latent Diffusion**
217

patil-suraj's avatar
patil-suraj committed
218
219
_Note: To use latent diffusion install transformers from [this branch](https://github.com/patil-suraj/transformers/tree/ldm-bert)._

220
221
222
223
224
```python
from diffusers import DiffusionPipeline

ldm = DiffusionPipeline.from_pretrained("fusing/latent-diffusion-text2im-large")

patil-suraj's avatar
patil-suraj committed
225
generator = torch.manual_seed(42)
226
227
228
229
230
231
232
233
234
235
236
237
238

prompt = "A painting of a squirrel eating a burger"
image = ldm([prompt], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=50)

image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = image_processed  * 255.
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])

# save image
image_pil.save("test.png")
```

Suraj Patil's avatar
Suraj Patil committed
239
#### **Text to speech with GradTTS and BDDM**
Suraj Patil's avatar
Suraj Patil committed
240
241
242

```python
import torch
Suraj Patil's avatar
Suraj Patil committed
243
from diffusers import BDDM, GradTTS
Suraj Patil's avatar
Suraj Patil committed
244
245
246

torch_device = "cuda"

Suraj Patil's avatar
Suraj Patil committed
247
248
249
# load grad tts and bddm pipelines
grad_tts = GradTTS.from_pretrained("fusing/grad-tts-libri-tts")
bddm = BDDM.from_pretrained("fusing/diffwave-vocoder-ljspeech")
Suraj Patil's avatar
Suraj Patil committed
250
251
252

text = "Hello world, I missed you so much."

Suraj Patil's avatar
Suraj Patil committed
253
# generate mel spectograms using text
Suraj Patil's avatar
Suraj Patil committed
254
mel_spec = grad_tts(text, torch_device=torch_device)
Suraj Patil's avatar
Suraj Patil committed
255

Suraj Patil's avatar
Suraj Patil committed
256
257
#  generate the speech by passing mel spectograms to BDDM pipeline
generator = torch.manual_seed(42)
Suraj Patil's avatar
Suraj Patil committed
258
audio = bddm(mel_spec, generator, torch_device=torch_device)
Suraj Patil's avatar
Suraj Patil committed
259

Suraj Patil's avatar
Suraj Patil committed
260
# save generated audio
Suraj Patil's avatar
Suraj Patil committed
261
262
263
264
from scipy.io.wavfile import write as wavwrite
sampling_rate = 22050
wavwrite("generated_audio.wav", sampling_rate, audio.squeeze().cpu().numpy())
```
Patrick von Platen's avatar
Patrick von Platen committed
265
266
267
268
269
270
271
272
273

## TODO

- Create common API for models [ ]
- Add tests for models [ ]
- Adapt schedulers for training [ ]
- Write google colab for training [ ]
- Write docs / Think about how to structure docs [ ]
- Add tests to circle ci [ ]
Muhtasham Oblokulov's avatar
Muhtasham Oblokulov committed
274
- Add [Diffusion LM models](https://arxiv.org/pdf/2205.14217.pdf) [ ]
Patrick von Platen's avatar
Patrick von Platen committed
275
276
277
- Add more vision models [ ]
- Add more speech models [ ]
- Add RL model [ ]