Unverified Commit acb2faae authored by Suraj Patil's avatar Suraj Patil Committed by GitHub
Browse files

Update README.md

parent 4c16b3a5
...@@ -137,8 +137,8 @@ unet = UNetModel.from_pretrained("fusing/ddpm-celeba-hq").to(torch_device) ...@@ -137,8 +137,8 @@ unet = UNetModel.from_pretrained("fusing/ddpm-celeba-hq").to(torch_device)
# 2. Sample gaussian noise # 2. Sample gaussian noise
image = torch.randn( image = torch.randn(
(1, unet.in_channels, unet.resolution, unet.resolution), (1, unet.in_channels, unet.resolution, unet.resolution),
generator=generator, generator=generator,
) )
image = image.to(torch_device) image = image.to(torch_device)
...@@ -147,10 +147,10 @@ num_inference_steps = 50 ...@@ -147,10 +147,10 @@ num_inference_steps = 50
eta = 0.0 # <- deterministic sampling eta = 0.0 # <- deterministic sampling
for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps): for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
# 1. predict noise residual # 1. predict noise residual
orig_t = noise_scheduler.get_orig_t(t, num_inference_steps) orig_t = noise_scheduler.get_orig_t(t, num_inference_steps)
with torch.no_grad(): with torch.no_grad():
residual = unet(image, orig_t) residual = unet(image, orig_t)
# 2. predict previous mean of image x_t-1 # 2. predict previous mean of image x_t-1
pred_prev_image = noise_scheduler.step(residual, image, t, num_inference_steps, eta) pred_prev_image = noise_scheduler.step(residual, image, t, num_inference_steps, eta)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment