README.md 10.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
<p align="center">
    <br>
Anton Lozhkov's avatar
Anton Lozhkov committed
3
    <img src="docs/source/imgs/diffusers_library.jpg" width="400"/>
Patrick von Platen's avatar
Patrick von Platen committed
4
5
6
    <br>
<p>
<p align="center">
Anton Lozhkov's avatar
Anton Lozhkov committed
7
    <a href="https://github.com/huggingface/diffusers/blob/main/LICENSE">
Patrick von Platen's avatar
Patrick von Platen committed
8
9
10
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue">
    </a>
    <a href="https://github.com/huggingface/diffusers/releases">
Anton Lozhkov's avatar
Anton Lozhkov committed
11
        <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg">
Patrick von Platen's avatar
Patrick von Platen committed
12
13
14
15
16
17
18
19
20
21
22
23
24
    </a>
    <a href="CODE_OF_CONDUCT.md">
        <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg">
    </a>
</p>

🤗 Diffusers provides pretrained diffusion models across multiple modalities, such as vision and audio, and serves
as a modular toolbox for inference and training of diffusion models.

More precisely, 🤗 Diffusers offers:

- State-of-the-art diffusion pipelines that can be run in inference with just a couple of lines of code (see [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines)).
- Various noise schedulers that can be used interchangeably for the prefered speed vs. quality trade-off in inference (see [src/diffusers/schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers)).
Suraj Patil's avatar
Suraj Patil committed
25
- Multiple types of models, such as UNet, that can be used as building blocks in an end-to-end diffusion system (see [src/diffusers/models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)).
Patrick von Platen's avatar
up  
Patrick von Platen committed
26
- Training examples to show how to train the most popular diffusion models (see [examples](https://github.com/huggingface/diffusers/tree/main/examples)).
Patrick von Platen's avatar
Patrick von Platen committed
27

Patrick von Platen's avatar
Patrick von Platen committed
28
## Definitions
Patrick von Platen's avatar
Patrick von Platen committed
29

Patrick von Platen's avatar
Patrick von Platen committed
30
31
**Models**: Neural network that models **p_θ(x_t-1|x_t)** (see image below) and is trained end-to-end to *denoise* a noisy input to an image.
*Examples*: UNet, Conditioned UNet, 3D UNet, Transformer UNet
Patrick von Platen's avatar
Patrick von Platen committed
32
33
34

![model_diff_1_50](https://user-images.githubusercontent.com/23423619/171610307-dab0cd8b-75da-4d4e-9f5a-5922072e2bb5.png)

Patrick von Platen's avatar
Patrick von Platen committed
35
36
37
**Schedulers**: Algorithm class for both **inference** and **training**.
The class provides functionality to compute previous image according to alpha, beta schedule as well as predict noise for training.
*Examples*: [DDPM](https://arxiv.org/abs/2006.11239), [DDIM](https://arxiv.org/abs/2010.02502), [PNDM](https://arxiv.org/abs/2202.09778), [DEIS](https://arxiv.org/abs/2204.13902)
Patrick von Platen's avatar
Patrick von Platen committed
38
39
40
41

![sampling](https://user-images.githubusercontent.com/23423619/171608981-3ad05953-a684-4c82-89f8-62a459147a07.png)
![training](https://user-images.githubusercontent.com/23423619/171608964-b3260cce-e6b4-4841-959d-7d8ba4b8d1b2.png)

Patrick von Platen's avatar
Patrick von Platen committed
42
43
**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, ...
*Examples*: GLIDE, Latent-Diffusion, Imagen, DALL-E 2
Patrick von Platen's avatar
Patrick von Platen committed
44
45

![imagen](https://user-images.githubusercontent.com/23423619/171609001-c3f2c1c9-f597-4a16-9843-749bf3f9431c.png)
Patrick von Platen's avatar
Patrick von Platen committed
46

Patrick von Platen's avatar
Patrick von Platen committed
47
48
49
50
51
52
53

## Philosophy

- Readability and clarity is prefered over highly optimized code. A strong importance is put on providing readable, intuitive and elementary code desgin. *E.g.*, the provided [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers) are separated from the provided [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and provide well-commented code that can be read alongside the original paper.
- Diffusers is **modality independent** and focusses on providing pretrained models and tools to build systems that generate **continous outputs**, *e.g.* vision and audio.
- Diffusion models and schedulers are provided as consise, elementary building blocks whereas diffusion pipelines are a collection of end-to-end diffusion systems that can be used out-of-the-box, should stay as close as possible to their original implementation and can include components of other library, such as text-encoders. Examples for diffusion pipelines are [Glide](https://github.com/openai/glide-text2im) and [Latent Diffusion](https://github.com/CompVis/latent-diffusion).

Patrick von Platen's avatar
Patrick von Platen committed
54
55
## Quickstart

Patrick von Platen's avatar
Patrick von Platen committed
56
57
58
```
git clone https://github.com/huggingface/diffusers.git
cd diffusers && pip install -e .
Patrick von Platen's avatar
Patrick von Platen committed
59
```
Patrick von Platen's avatar
Patrick von Platen committed
60

Patrick von Platen's avatar
Patrick von Platen committed
61
### 1. `diffusers` as a toolbox for schedulers and models.
Patrick von Platen's avatar
Patrick von Platen committed
62

Patrick von Platen's avatar
Patrick von Platen committed
63
64
`diffusers` is more modularized than `transformers`. The idea is that researchers and engineers can use only parts of the library easily for the own use cases.
It could become a central place for all kinds of models, schedulers, training utils and processors that one can mix and match for one's own use case.
Patrick von Platen's avatar
Patrick von Platen committed
65
Both models and schedulers should be load- and saveable from the Hub.
Patrick von Platen's avatar
Patrick von Platen committed
66

Patrick von Platen's avatar
Patrick von Platen committed
67
68
For more examples see [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers) and [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)

Patrick von Platen's avatar
Patrick von Platen committed
69
#### **Example for [DDPM](https://arxiv.org/abs/2006.11239):**
Patrick von Platen's avatar
Patrick von Platen committed
70
71
72

```python
import torch
Patrick von Platen's avatar
Patrick von Platen committed
73
from diffusers import UNetModel, DDPMScheduler
Patrick von Platen's avatar
Patrick von Platen committed
74
75
import PIL
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
76
import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
77

Patrick von Platen's avatar
Patrick von Platen committed
78
generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
79
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
Patrick von Platen's avatar
Patrick von Platen committed
80
81

# 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
82
noise_scheduler = DDPMScheduler.from_config("fusing/ddpm-lsun-church", tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
83
unet = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
84
85

# 2. Sample gaussian noise
Patrick von Platen's avatar
Patrick von Platen committed
86
image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
87
88
	(1, unet.in_channels, unet.resolution, unet.resolution),
	generator=generator,
Patrick von Platen's avatar
Patrick von Platen committed
89
90
)
image = image.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
91

Patrick von Platen's avatar
Patrick von Platen committed
92
# 3. Denoise
Patrick von Platen's avatar
Patrick von Platen committed
93
94
num_prediction_steps = len(noise_scheduler)
for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
Patrick von Platen's avatar
Patrick von Platen committed
95
96
	# predict noise residual
	with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
97
		residual = unet(image, t)
Patrick von Platen's avatar
Patrick von Platen committed
98

Patrick von Platen's avatar
Patrick von Platen committed
99
	# predict previous mean of image x_t-1
Patrick von Platen's avatar
Patrick von Platen committed
100
	pred_prev_image = noise_scheduler.step(residual, image, t)
Patrick von Platen's avatar
Patrick von Platen committed
101

Patrick von Platen's avatar
Patrick von Platen committed
102
103
104
	# optionally sample variance
	variance = 0
	if t > 0:
Patrick von Platen's avatar
Patrick von Platen committed
105
		noise = torch.randn(image.shape, generator=generator).to(image.device)
Patrick von Platen's avatar
Patrick von Platen committed
106
		variance = noise_scheduler.get_variance(t).sqrt() * noise
Patrick von Platen's avatar
Patrick von Platen committed
107

Patrick von Platen's avatar
Patrick von Platen committed
108
109
	# set current image to prev_image: x_t -> x_t-1
	image = pred_prev_image + variance
Patrick von Platen's avatar
Patrick von Platen committed
110
111
112
113
114
115
116
117
118
119
120

# 5. process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])

# 6. save image
image_pil.save("test.png")
```

Patrick von Platen's avatar
Patrick von Platen committed
121
#### **Example for [DDIM](https://arxiv.org/abs/2010.02502):**
Patrick von Platen's avatar
Patrick von Platen committed
122
123
124
125
126
127

```python
import torch
from diffusers import UNetModel, DDIMScheduler
import PIL
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
128
import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
129
130
131
132
133

generator = torch.manual_seed(0)
torch_device = "cuda" if torch.cuda.is_available() else "cpu"

# 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
134
noise_scheduler = DDIMScheduler.from_config("fusing/ddpm-celeba-hq", tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
135
unet = UNetModel.from_pretrained("fusing/ddpm-celeba-hq").to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
136
137

# 2. Sample gaussian noise
Patrick von Platen's avatar
Patrick von Platen committed
138
image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
139
140
	(1, unet.in_channels, unet.resolution, unet.resolution),
	generator=generator,
Patrick von Platen's avatar
Patrick von Platen committed
141
142
)
image = image.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
143
144
145
146
147
148

# 3. Denoise                                                                                                                                           
num_inference_steps = 50
eta = 0.0  # <- deterministic sampling

for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
149
150
151
152
153
154
	# 1. predict noise residual
	orig_t = noise_scheduler.get_orig_t(t, num_inference_steps)
	with torch.no_grad():
	    residual = unet(image, orig_t)

	# 2. predict previous mean of image x_t-1
Patrick von Platen's avatar
Patrick von Platen committed
155
	pred_prev_image = noise_scheduler.step(residual, image, t, num_inference_steps, eta)
Patrick von Platen's avatar
Patrick von Platen committed
156
157
158
159

	# 3. optionally sample variance
	variance = 0
	if eta > 0:
Patrick von Platen's avatar
Patrick von Platen committed
160
		noise = torch.randn(image.shape, generator=generator).to(image.device)
Patrick von Platen's avatar
Patrick von Platen committed
161
162
163
164
		variance = noise_scheduler.get_variance(t).sqrt() * eta * noise

	# 4. set current image to prev_image: x_t -> x_t-1
	image = pred_prev_image + variance
Patrick von Platen's avatar
Patrick von Platen committed
165
166

# 5. process image to PIL
Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
170
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
Patrick von Platen's avatar
Patrick von Platen committed
171

Patrick von Platen's avatar
Patrick von Platen committed
172
# 6. save image
Patrick von Platen's avatar
Patrick von Platen committed
173
image_pil.save("test.png")
Patrick von Platen's avatar
Patrick von Platen committed
174
175
```

Patrick von Platen's avatar
Patrick von Platen committed
176
177
178
### 2. `diffusers` as a collection of popula Diffusion systems (GLIDE, Dalle, ...)

For more examples see [pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines).
Patrick von Platen's avatar
Patrick von Platen committed
179

Patrick von Platen's avatar
Patrick von Platen committed
180
#### **Example image generation with PNDM**
Patrick von Platen's avatar
Patrick von Platen committed
181
182

```python
Patrick von Platen's avatar
Patrick von Platen committed
183
from diffusers import PNDM, UNetModel, PNDMScheduler
Patrick von Platen's avatar
Patrick von Platen committed
184
185
import PIL.Image
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
186
187
188
189
190
191
import torch

model_id = "fusing/ddim-celeba-hq"

model = UNetModel.from_pretrained(model_id)
scheduler = PNDMScheduler()
Patrick von Platen's avatar
Patrick von Platen committed
192

Patrick von Platen's avatar
Patrick von Platen committed
193
# load model and scheduler
Patrick von Platen's avatar
Patrick von Platen committed
194
ddpm = PNDM(unet=model, noise_scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
195
196

# run pipeline in inference (sample random noise and denoise)
Patrick von Platen's avatar
Patrick von Platen committed
197
198
with torch.no_grad():
    image = ddpm()
Patrick von Platen's avatar
Patrick von Platen committed
199

Patrick von Platen's avatar
Patrick von Platen committed
200
# process image to PIL
Patrick von Platen's avatar
Patrick von Platen committed
201
image_processed = image.cpu().permute(0, 2, 3, 1)
Patrick von Platen's avatar
Patrick von Platen committed
202
203
204
image_processed = (image_processed + 1.0) / 2
image_processed = torch.clamp(image_processed, 0.0, 1.0)
image_processed = image_processed * 255
Patrick von Platen's avatar
Patrick von Platen committed
205
206
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
Patrick von Platen's avatar
Patrick von Platen committed
207
208

# save image
Patrick von Platen's avatar
Patrick von Platen committed
209
image_pil.save("test.png")
Patrick von Platen's avatar
Patrick von Platen committed
210
211
```

Suraj Patil's avatar
Suraj Patil committed
212
#### **Text to Image generation with Latent Diffusion**
213

patil-suraj's avatar
patil-suraj committed
214
215
_Note: To use latent diffusion install transformers from [this branch](https://github.com/patil-suraj/transformers/tree/ldm-bert)._

216
217
218
219
220
```python
from diffusers import DiffusionPipeline

ldm = DiffusionPipeline.from_pretrained("fusing/latent-diffusion-text2im-large")

patil-suraj's avatar
patil-suraj committed
221
generator = torch.manual_seed(42)
222
223
224
225
226
227
228
229
230
231
232
233
234

prompt = "A painting of a squirrel eating a burger"
image = ldm([prompt], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=50)

image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = image_processed  * 255.
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])

# save image
image_pil.save("test.png")
```

Suraj Patil's avatar
Suraj Patil committed
235
 #### **Text to speech with BDDM**
Suraj Patil's avatar
Suraj Patil committed
236
237
238
239
240
241
242
243
244
245

_Follow the isnstructions [here](https://pytorch.org/hub/nvidia_deeplearningexamples_tacotron2/) to load tacotron2 model._

```python
import torch
from diffusers import BDDM, DiffusionPipeline

torch_device = "cuda"

# load the BDDM pipeline
patil-suraj's avatar
patil-suraj committed
246
bddm = DiffusionPipeline.from_pretrained("fusing/diffwave-vocoder-ljspeech")
Suraj Patil's avatar
Suraj Patil committed
247
248
249
250
251
252
253
254
255
256

# load tacotron2 to get the mel spectograms
tacotron2 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_tacotron2', model_math='fp16')
tacotron2 = tacotron2.to(torch_device).eval()

text = "Hello world, I missed you so much."

utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_tts_utils')
sequences, lengths = utils.prepare_input_sequence([text])

Suraj Patil's avatar
Suraj Patil committed
257
# generate mel spectograms using text
Suraj Patil's avatar
Suraj Patil committed
258
with torch.no_grad():
Suraj Patil's avatar
Suraj Patil committed
259
    mel_spec, _, _ = tacotron2.infer(sequences, lengths)
Suraj Patil's avatar
Suraj Patil committed
260

Suraj Patil's avatar
Suraj Patil committed
261
# generate the speech by passing mel spectograms to BDDM pipeline
Suraj Patil's avatar
Suraj Patil committed
262
generator = torch.manual_seed(0)
Suraj Patil's avatar
Suraj Patil committed
263
audio = bddm(mel_spec, generator, torch_device)
Suraj Patil's avatar
Suraj Patil committed
264

Suraj Patil's avatar
Suraj Patil committed
265
# save generated audio
Suraj Patil's avatar
Suraj Patil committed
266
267
268
269
from scipy.io.wavfile import write as wavwrite
sampling_rate = 22050
wavwrite("generated_audio.wav", sampling_rate, audio.squeeze().cpu().numpy())
```