"script/torch.sh" did not exist on "193136fd87563601252ca442ec4849bdb1c7bb7f"
README.md 8.09 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
# Diffusers

Patrick von Platen's avatar
Patrick von Platen committed
3
## Definitions
Patrick von Platen's avatar
Patrick von Platen committed
4

Patrick von Platen's avatar
Patrick von Platen committed
5
6
7
8
9
**Models**: Single neural network that models p_θ(x_t-1|x_t) and is trained to “denoise” to image
*Examples: UNet, Conditioned UNet, 3D UNet, Transformer UNet*

![model_diff_1_50](https://user-images.githubusercontent.com/23423619/171610307-dab0cd8b-75da-4d4e-9f5a-5922072e2bb5.png)

Patrick von Platen's avatar
Patrick von Platen committed
10
**Schedulers**: Algorithm to compute previous image according to alpha, beta schedule and to sample noise. Should be used for both *training* and *inference*.
Patrick von Platen's avatar
Patrick von Platen committed
11
*Example: Gaussian DDPM, DDIM, PMLS, DEIN*
Patrick von Platen's avatar
Patrick von Platen committed
12
13
14
15
16
17
18
19

![sampling](https://user-images.githubusercontent.com/23423619/171608981-3ad05953-a684-4c82-89f8-62a459147a07.png)
![training](https://user-images.githubusercontent.com/23423619/171608964-b3260cce-e6b4-4841-959d-7d8ba4b8d1b2.png)

**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, CLIP
*Example: GLIDE,CompVis/Latent-Diffusion, Imagen, DALL-E*

![imagen](https://user-images.githubusercontent.com/23423619/171609001-c3f2c1c9-f597-4a16-9843-749bf3f9431c.png)
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
22
## Quickstart

Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
```
git clone https://github.com/huggingface/diffusers.git
cd diffusers && pip install -e .
Patrick von Platen's avatar
Patrick von Platen committed
26
```
Patrick von Platen's avatar
Patrick von Platen committed
27

Patrick von Platen's avatar
Patrick von Platen committed
28
### 1. `diffusers` as a central modular diffusion and sampler library
Patrick von Platen's avatar
Patrick von Platen committed
29

Patrick von Platen's avatar
Patrick von Platen committed
30
31
`diffusers` is more modularized than `transformers`. The idea is that researchers and engineers can use only parts of the library easily for the own use cases.
It could become a central place for all kinds of models, schedulers, training utils and processors that one can mix and match for one's own use case.
Patrick von Platen's avatar
Patrick von Platen committed
32
Both models and schedulers should be load- and saveable from the Hub.
Patrick von Platen's avatar
Patrick von Platen committed
33

Patrick von Platen's avatar
Patrick von Platen committed
34
#### **Example for [DDPM](https://arxiv.org/abs/2006.11239):**
Patrick von Platen's avatar
Patrick von Platen committed
35
36
37

```python
import torch
Patrick von Platen's avatar
Patrick von Platen committed
38
from diffusers import UNetModel, DDPMScheduler
Patrick von Platen's avatar
Patrick von Platen committed
39
40
import PIL
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
41
import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
42

Patrick von Platen's avatar
Patrick von Platen committed
43
generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
44
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
Patrick von Platen's avatar
Patrick von Platen committed
45
46

# 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
47
noise_scheduler = DDPMScheduler.from_config("fusing/ddpm-lsun-church", tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
48
unet = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
49
50

# 2. Sample gaussian noise
Patrick von Platen's avatar
Patrick von Platen committed
51
image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
52
53
	(1, unet.in_channels, unet.resolution, unet.resolution),
	generator=generator,
Patrick von Platen's avatar
Patrick von Platen committed
54
55
)
image = image.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
56

Patrick von Platen's avatar
Patrick von Platen committed
57
# 3. Denoise
Patrick von Platen's avatar
Patrick von Platen committed
58
59
num_prediction_steps = len(noise_scheduler)
for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
Patrick von Platen's avatar
Patrick von Platen committed
60
61
	# predict noise residual
	with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
62
		residual = unet(image, t)
Patrick von Platen's avatar
Patrick von Platen committed
63

Patrick von Platen's avatar
Patrick von Platen committed
64
	# predict previous mean of image x_t-1
Patrick von Platen's avatar
Patrick von Platen committed
65
	pred_prev_image = noise_scheduler.step(residual, image, t)
Patrick von Platen's avatar
Patrick von Platen committed
66

Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
	# optionally sample variance
	variance = 0
	if t > 0:
Patrick von Platen's avatar
Patrick von Platen committed
70
		noise = torch.randn(image.shape, generator=generator).to(image.device)
Patrick von Platen's avatar
Patrick von Platen committed
71
		variance = noise_scheduler.get_variance(t).sqrt() * noise
Patrick von Platen's avatar
Patrick von Platen committed
72

Patrick von Platen's avatar
Patrick von Platen committed
73
74
	# set current image to prev_image: x_t -> x_t-1
	image = pred_prev_image + variance
Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
78
79
80
81
82
83
84
85

# 5. process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])

# 6. save image
image_pil.save("test.png")
```

Patrick von Platen's avatar
Patrick von Platen committed
86
#### **Example for [DDIM](https://arxiv.org/abs/2010.02502):**
Patrick von Platen's avatar
Patrick von Platen committed
87
88
89
90
91
92

```python
import torch
from diffusers import UNetModel, DDIMScheduler
import PIL
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
93
import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
94
95
96
97
98

generator = torch.manual_seed(0)
torch_device = "cuda" if torch.cuda.is_available() else "cpu"

# 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
99
noise_scheduler = DDIMScheduler.from_config("fusing/ddpm-celeba-hq", tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
100
unet = UNetModel.from_pretrained("fusing/ddpm-celeba-hq").to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
101
102

# 2. Sample gaussian noise
Patrick von Platen's avatar
Patrick von Platen committed
103
image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
104
105
	(1, unet.in_channels, unet.resolution, unet.resolution),
	generator=generator,
Patrick von Platen's avatar
Patrick von Platen committed
106
107
)
image = image.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
108
109
110
111
112
113

# 3. Denoise                                                                                                                                           
num_inference_steps = 50
eta = 0.0  # <- deterministic sampling

for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
114
115
116
117
118
119
	# 1. predict noise residual
	orig_t = noise_scheduler.get_orig_t(t, num_inference_steps)
	with torch.no_grad():
	    residual = unet(image, orig_t)

	# 2. predict previous mean of image x_t-1
Patrick von Platen's avatar
Patrick von Platen committed
120
	pred_prev_image = noise_scheduler.step(residual, image, t, num_inference_steps, eta)
Patrick von Platen's avatar
Patrick von Platen committed
121
122
123
124

	# 3. optionally sample variance
	variance = 0
	if eta > 0:
Patrick von Platen's avatar
Patrick von Platen committed
125
		noise = torch.randn(image.shape, generator=generator).to(image.device)
Patrick von Platen's avatar
Patrick von Platen committed
126
127
128
129
		variance = noise_scheduler.get_variance(t).sqrt() * eta * noise

	# 4. set current image to prev_image: x_t -> x_t-1
	image = pred_prev_image + variance
Patrick von Platen's avatar
Patrick von Platen committed
130
131

# 5. process image to PIL
Patrick von Platen's avatar
Patrick von Platen committed
132
133
134
135
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
Patrick von Platen's avatar
Patrick von Platen committed
136

Patrick von Platen's avatar
Patrick von Platen committed
137
# 6. save image
Patrick von Platen's avatar
Patrick von Platen committed
138
image_pil.save("test.png")
Patrick von Platen's avatar
Patrick von Platen committed
139
140
```

Patrick von Platen's avatar
Patrick von Platen committed
141
### 2. `diffusers` as a collection of most important Diffusion systems (GLIDE, Dalle, ...)
Patrick von Platen's avatar
Patrick von Platen committed
142
`models` directory in repository hosts the complete code necessary for running a diffusion system as well as to train it. A `DiffusionPipeline` class allows to easily run the diffusion model in inference:
Patrick von Platen's avatar
Patrick von Platen committed
143

Patrick von Platen's avatar
Patrick von Platen committed
144
#### **Example image generation with DDPM**
Patrick von Platen's avatar
Patrick von Platen committed
145
146

```python
Suraj Patil's avatar
Suraj Patil committed
147
from diffusers import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
148
149
import PIL.Image
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
150

Patrick von Platen's avatar
Patrick von Platen committed
151
# load model and scheduler
Suraj Patil's avatar
Suraj Patil committed
152
ddpm = DiffusionPipeline.from_pretrained("fusing/ddpm-lsun-bedroom")
Patrick von Platen's avatar
Patrick von Platen committed
153
154

# run pipeline in inference (sample random noise and denoise)
Patrick von Platen's avatar
Patrick von Platen committed
155
156
image = ddpm()

Patrick von Platen's avatar
Patrick von Platen committed
157
# process image to PIL
Patrick von Platen's avatar
Patrick von Platen committed
158
159
160
161
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
Patrick von Platen's avatar
Patrick von Platen committed
162
163

# save image
Patrick von Platen's avatar
Patrick von Platen committed
164
image_pil.save("test.png")
Patrick von Platen's avatar
Patrick von Platen committed
165
166
```

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
**Text to Image generation with Latent Diffusion**

```python
from diffusers import DiffusionPipeline

ldm = DiffusionPipeline.from_pretrained("fusing/latent-diffusion-text2im-large")

generator = torch.Generator()
generator = generator.manual_seed(6694729458485568)

prompt = "A painting of a squirrel eating a burger"
image = ldm([prompt], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=50)

image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = image_processed  * 255.
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])

# save image
image_pil.save("test.png")
```

Patrick von Platen's avatar
Patrick von Platen committed
189
190
191
192
## Library structure:

```
├── models
Patrick von Platen's avatar
Patrick von Platen committed
193
194
195
196
197
│   ├── audio
│   │   └── fastdiff
│   │       ├── modeling_fastdiff.py
│   │       ├── README.md
│   │       └── run_fastdiff.py
Patrick von Platen's avatar
Patrick von Platen committed
198
│   ├── __init__.py
Patrick von Platen's avatar
Patrick von Platen committed
199
200
201
202
203
204
│   └── vision
│       ├── dalle2
│       │   ├── modeling_dalle2.py
│       │   ├── README.md
│       │   └── run_dalle2.py
│       ├── ddpm
Patrick von Platen's avatar
Patrick von Platen committed
205
│       │   ├── example.py
Patrick von Platen's avatar
Patrick von Platen committed
206
207
208
209
210
│       │   ├── modeling_ddpm.py
│       │   ├── README.md
│       │   └── run_ddpm.py
│       ├── glide
│       │   ├── modeling_glide.py
Patrick von Platen's avatar
Patrick von Platen committed
211
│       │   ├── modeling_vqvae.py.py
Patrick von Platen's avatar
Patrick von Platen committed
212
│       │   ├── README.md
Patrick von Platen's avatar
Patrick von Platen committed
213
│       │   └── run_glide.py
Patrick von Platen's avatar
Patrick von Platen committed
214
215
216
217
│       ├── imagen
│       │   ├── modeling_dalle2.py
│       │   ├── README.md
│       │   └── run_dalle2.py
Patrick von Platen's avatar
Patrick von Platen committed
218
│       ├── __init__.py
Patrick von Platen's avatar
Patrick von Platen committed
219
220
221
222
│       └── latent_diffusion
│           ├── modeling_latent_diffusion.py
│           ├── README.md
│           └── run_latent_diffusion.py
Patrick von Platen's avatar
Patrick von Platen committed
223
224
225
226
├── pyproject.toml
├── README.md
├── setup.cfg
├── setup.py
Patrick von Platen's avatar
Patrick von Platen committed
227
228
229
230
231
232
├── src
│   └── diffusers
│       ├── configuration_utils.py
│       ├── __init__.py
│       ├── modeling_utils.py
│       ├── models
Patrick von Platen's avatar
Patrick von Platen committed
233
234
│       │   ├── __init__.py
│       │   ├── unet_glide.py
Patrick von Platen's avatar
Patrick von Platen committed
235
│       │   └── unet.py
Patrick von Platen's avatar
Patrick von Platen committed
236
│       ├── pipeline_utils.py
Patrick von Platen's avatar
Patrick von Platen committed
237
238
│       └── schedulers
│           ├── gaussian_ddpm.py
Patrick von Platen's avatar
Patrick von Platen committed
239
│           ├── __init__.py
Patrick von Platen's avatar
Patrick von Platen committed
240
241
242
├── tests
│   └── test_modeling_utils.py
```