README.md 2.44 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
# Diffusers

## Library structure:

```
├── models
Patrick von Platen's avatar
Patrick von Platen committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
│   ├── audio
│   │   └── fastdiff
│   │       ├── modeling_fastdiff.py
│   │       ├── README.md
│   │       └── run_fastdiff.py
│   └── vision
│       ├── dalle2
│       │   ├── modeling_dalle2.py
│       │   ├── README.md
│       │   └── run_dalle2.py
│       ├── ddpm
│       │   ├── modeling_ddpm.py
│       │   ├── README.md
│       │   └── run_ddpm.py
│       ├── glide
│       │   ├── modeling_glide.py
│       │   ├── README.md
│       │   └── run_dalle2.py
│       ├── imagen
│       │   ├── modeling_dalle2.py
│       │   ├── README.md
│       │   └── run_dalle2.py
│       └── latent_diffusion
│           ├── modeling_latent_diffusion.py
│           ├── README.md
│           └── run_latent_diffusion.py

Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
38
39
40
41
42
43
44
45
46
├── src
│   └── diffusers
│       ├── configuration_utils.py
│       ├── __init__.py
│       ├── modeling_utils.py
│       ├── models
│       │   └── unet.py
│       ├── processors
│       └── samplers
│           ├── gaussian.py
├── tests
│   └── test_modeling_utils.py
```
Patrick von Platen's avatar
Patrick von Platen committed
47

Patrick von Platen's avatar
Patrick von Platen committed
48
49
50
51
52
53
54
55
## 1. `diffusers` as a central modular diffusion and sampler library

`diffusers` should be more modularized than `transformers` so that parts of it can be easily used in other libraries.
It could become a central place for all kinds of models, samplers, training utils and processors required when using diffusion models in audio, vision, ... 
One should be able to save both models and samplers as well as load them from the Hub.

Example:

Patrick von Platen's avatar
Patrick von Platen committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
```python
from diffusers import UNetModel, GaussianDiffusion
import torch

# 1. Load model
unet = UNetModel.from_pretrained("fusing/ddpm_dummy")

# 2. Do one denoising step with model
batch_size, num_channels, height, width = 1, 3, 32, 32
dummy_noise = torch.ones((batch_size, num_channels, height, width))
time_step = torch.tensor([10])
image = unet(dummy_noise, time_step)

# 3. Load sampler
sampler = GaussianDiffusion.from_config("fusing/ddpm_dummy")

# 4. Sample image from sampler passing the model
image = sampler.sample(model, batch_size=1)

print(image)
```