README.md 11.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
<p align="center">
    <br>
Anton Lozhkov's avatar
Anton Lozhkov committed
3
    <img src="docs/source/imgs/diffusers_library.jpg" width="400"/>
Patrick von Platen's avatar
Patrick von Platen committed
4
5
6
    <br>
<p>
<p align="center">
Anton Lozhkov's avatar
Anton Lozhkov committed
7
    <a href="https://github.com/huggingface/diffusers/blob/main/LICENSE">
Patrick von Platen's avatar
Patrick von Platen committed
8
9
10
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue">
    </a>
    <a href="https://github.com/huggingface/diffusers/releases">
Anton Lozhkov's avatar
Anton Lozhkov committed
11
        <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg">
Patrick von Platen's avatar
Patrick von Platen committed
12
13
14
15
16
17
18
19
20
21
22
23
24
    </a>
    <a href="CODE_OF_CONDUCT.md">
        <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg">
    </a>
</p>

🤗 Diffusers provides pretrained diffusion models across multiple modalities, such as vision and audio, and serves
as a modular toolbox for inference and training of diffusion models.

More precisely, 🤗 Diffusers offers:

- State-of-the-art diffusion pipelines that can be run in inference with just a couple of lines of code (see [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines)).
- Various noise schedulers that can be used interchangeably for the prefered speed vs. quality trade-off in inference (see [src/diffusers/schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers)).
Suraj Patil's avatar
Suraj Patil committed
25
- Multiple types of models, such as UNet, that can be used as building blocks in an end-to-end diffusion system (see [src/diffusers/models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)).
Patrick von Platen's avatar
up  
Patrick von Platen committed
26
- Training examples to show how to train the most popular diffusion models (see [examples](https://github.com/huggingface/diffusers/tree/main/examples)).
Patrick von Platen's avatar
Patrick von Platen committed
27

Patrick von Platen's avatar
Patrick von Platen committed
28
## Definitions
Patrick von Platen's avatar
Patrick von Platen committed
29

Patrick von Platen's avatar
Patrick von Platen committed
30
31
**Models**: Neural network that models **p_θ(x_t-1|x_t)** (see image below) and is trained end-to-end to *denoise* a noisy input to an image.
*Examples*: UNet, Conditioned UNet, 3D UNet, Transformer UNet
Patrick von Platen's avatar
Patrick von Platen committed
32
33
34

![model_diff_1_50](https://user-images.githubusercontent.com/23423619/171610307-dab0cd8b-75da-4d4e-9f5a-5922072e2bb5.png)

Patrick von Platen's avatar
Patrick von Platen committed
35
36
37
**Schedulers**: Algorithm class for both **inference** and **training**.
The class provides functionality to compute previous image according to alpha, beta schedule as well as predict noise for training.
*Examples*: [DDPM](https://arxiv.org/abs/2006.11239), [DDIM](https://arxiv.org/abs/2010.02502), [PNDM](https://arxiv.org/abs/2202.09778), [DEIS](https://arxiv.org/abs/2204.13902)
Patrick von Platen's avatar
Patrick von Platen committed
38
39
40
41

![sampling](https://user-images.githubusercontent.com/23423619/171608981-3ad05953-a684-4c82-89f8-62a459147a07.png)
![training](https://user-images.githubusercontent.com/23423619/171608964-b3260cce-e6b4-4841-959d-7d8ba4b8d1b2.png)

Patrick von Platen's avatar
Patrick von Platen committed
42
43
**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, ...
*Examples*: GLIDE, Latent-Diffusion, Imagen, DALL-E 2
Patrick von Platen's avatar
Patrick von Platen committed
44
45

![imagen](https://user-images.githubusercontent.com/23423619/171609001-c3f2c1c9-f597-4a16-9843-749bf3f9431c.png)
Patrick von Platen's avatar
Patrick von Platen committed
46

Patrick von Platen's avatar
Patrick von Platen committed
47
48
49
50
51
52
53

## Philosophy

- Readability and clarity is prefered over highly optimized code. A strong importance is put on providing readable, intuitive and elementary code desgin. *E.g.*, the provided [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers) are separated from the provided [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and provide well-commented code that can be read alongside the original paper.
- Diffusers is **modality independent** and focusses on providing pretrained models and tools to build systems that generate **continous outputs**, *e.g.* vision and audio.
- Diffusion models and schedulers are provided as consise, elementary building blocks whereas diffusion pipelines are a collection of end-to-end diffusion systems that can be used out-of-the-box, should stay as close as possible to their original implementation and can include components of other library, such as text-encoders. Examples for diffusion pipelines are [Glide](https://github.com/openai/glide-text2im) and [Latent Diffusion](https://github.com/CompVis/latent-diffusion).

Patrick von Platen's avatar
Patrick von Platen committed
54
55
## Quickstart

Patrick von Platen's avatar
Patrick von Platen committed
56
57
58
### Installation

**Note**: If you want to run PyTorch on GPU on a CUDA-compatible machine, please make sure to install the corresponding `torch` version from the 
Patrick von Platen's avatar
Patrick von Platen committed
59
[official website](https://pytorch.org/).
Patrick von Platen's avatar
Patrick von Platen committed
60
61
62
```
git clone https://github.com/huggingface/diffusers.git
cd diffusers && pip install -e .
Patrick von Platen's avatar
Patrick von Platen committed
63
```
Patrick von Platen's avatar
Patrick von Platen committed
64

Patrick von Platen's avatar
Patrick von Platen committed
65
### 1. `diffusers` as a toolbox for schedulers and models.
Patrick von Platen's avatar
Patrick von Platen committed
66

Patrick von Platen's avatar
Patrick von Platen committed
67
68
`diffusers` is more modularized than `transformers`. The idea is that researchers and engineers can use only parts of the library easily for the own use cases.
It could become a central place for all kinds of models, schedulers, training utils and processors that one can mix and match for one's own use case.
Patrick von Platen's avatar
Patrick von Platen committed
69
Both models and schedulers should be load- and saveable from the Hub.
Patrick von Platen's avatar
Patrick von Platen committed
70

Patrick von Platen's avatar
Patrick von Platen committed
71
72
For more examples see [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers) and [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)

Patrick von Platen's avatar
Patrick von Platen committed
73
#### **Example for [DDPM](https://arxiv.org/abs/2006.11239):**
Patrick von Platen's avatar
Patrick von Platen committed
74
75
76

```python
import torch
Patrick von Platen's avatar
Patrick von Platen committed
77
from diffusers import UNetModel, DDPMScheduler
Patrick von Platen's avatar
Patrick von Platen committed
78
79
import PIL
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
80
import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
81

Patrick von Platen's avatar
Patrick von Platen committed
82
generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
83
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
Patrick von Platen's avatar
Patrick von Platen committed
84
85

# 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
86
noise_scheduler = DDPMScheduler.from_config("fusing/ddpm-lsun-church", tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
87
unet = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
88
89

# 2. Sample gaussian noise
Patrick von Platen's avatar
Patrick von Platen committed
90
image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
91
92
    (1, unet.in_channels, unet.resolution, unet.resolution),
    generator=generator,
Patrick von Platen's avatar
Patrick von Platen committed
93
94
)
image = image.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
95

Patrick von Platen's avatar
Patrick von Platen committed
96
# 3. Denoise
Patrick von Platen's avatar
Patrick von Platen committed
97
98
num_prediction_steps = len(noise_scheduler)
for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
Patrick von Platen's avatar
Patrick von Platen committed
99
100
    # predict noise residual
    with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
101
        residual = unet(image, t)
Patrick von Platen's avatar
Patrick von Platen committed
102

Patrick von Platen's avatar
Patrick von Platen committed
103
104
    # predict previous mean of image x_t-1
    pred_prev_image = noise_scheduler.step(residual, image, t)
Patrick von Platen's avatar
Patrick von Platen committed
105

Patrick von Platen's avatar
Patrick von Platen committed
106
107
108
109
    # optionally sample variance
    variance = 0
    if t > 0:
        noise = torch.randn(image.shape, generator=generator).to(image.device)
Patrick von Platen's avatar
Patrick von Platen committed
110
        variance = noise_scheduler.get_variance(t).sqrt() * noise
Patrick von Platen's avatar
Patrick von Platen committed
111

Patrick von Platen's avatar
Patrick von Platen committed
112
113
    # set current image to prev_image: x_t -> x_t-1
    image = pred_prev_image + variance
Patrick von Platen's avatar
Patrick von Platen committed
114
115
116
117
118
119
120
121
122
123
124

# 5. process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])

# 6. save image
image_pil.save("test.png")
```

Patrick von Platen's avatar
Patrick von Platen committed
125
#### **Example for [DDIM](https://arxiv.org/abs/2010.02502):**
Patrick von Platen's avatar
Patrick von Platen committed
126
127
128
129
130
131

```python
import torch
from diffusers import UNetModel, DDIMScheduler
import PIL
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
132
import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
133
134
135
136
137

generator = torch.manual_seed(0)
torch_device = "cuda" if torch.cuda.is_available() else "cpu"

# 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
138
noise_scheduler = DDIMScheduler.from_config("fusing/ddpm-celeba-hq", tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
139
unet = UNetModel.from_pretrained("fusing/ddpm-celeba-hq").to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
140
141

# 2. Sample gaussian noise
Patrick von Platen's avatar
Patrick von Platen committed
142
image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
143
144
	(1, unet.in_channels, unet.resolution, unet.resolution),
	generator=generator,
Patrick von Platen's avatar
Patrick von Platen committed
145
146
)
image = image.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
147
148
149
150
151
152

# 3. Denoise                                                                                                                                           
num_inference_steps = 50
eta = 0.0  # <- deterministic sampling

for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
153
154
155
156
157
158
	# 1. predict noise residual
	orig_t = noise_scheduler.get_orig_t(t, num_inference_steps)
	with torch.no_grad():
	    residual = unet(image, orig_t)

	# 2. predict previous mean of image x_t-1
Patrick von Platen's avatar
Patrick von Platen committed
159
	pred_prev_image = noise_scheduler.step(residual, image, t, num_inference_steps, eta)
Patrick von Platen's avatar
Patrick von Platen committed
160
161
162
163

	# 3. optionally sample variance
	variance = 0
	if eta > 0:
Patrick von Platen's avatar
Patrick von Platen committed
164
		noise = torch.randn(image.shape, generator=generator).to(image.device)
Patrick von Platen's avatar
Patrick von Platen committed
165
166
167
168
		variance = noise_scheduler.get_variance(t).sqrt() * eta * noise

	# 4. set current image to prev_image: x_t -> x_t-1
	image = pred_prev_image + variance
Patrick von Platen's avatar
Patrick von Platen committed
169
170

# 5. process image to PIL
Patrick von Platen's avatar
Patrick von Platen committed
171
172
173
174
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
Patrick von Platen's avatar
Patrick von Platen committed
175

Patrick von Platen's avatar
Patrick von Platen committed
176
# 6. save image
Patrick von Platen's avatar
Patrick von Platen committed
177
image_pil.save("test.png")
Patrick von Platen's avatar
Patrick von Platen committed
178
179
```

Patrick von Platen's avatar
Patrick von Platen committed
180
181
182
### 2. `diffusers` as a collection of popula Diffusion systems (GLIDE, Dalle, ...)

For more examples see [pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines).
Patrick von Platen's avatar
Patrick von Platen committed
183

Patrick von Platen's avatar
Patrick von Platen committed
184
#### **Example image generation with PNDM**
Patrick von Platen's avatar
Patrick von Platen committed
185
186

```python
Patrick von Platen's avatar
Patrick von Platen committed
187
from diffusers import PNDM, UNetModel, PNDMScheduler
Patrick von Platen's avatar
Patrick von Platen committed
188
189
import PIL.Image
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
190
191
192
193
194
195
import torch

model_id = "fusing/ddim-celeba-hq"

model = UNetModel.from_pretrained(model_id)
scheduler = PNDMScheduler()
Patrick von Platen's avatar
Patrick von Platen committed
196

Patrick von Platen's avatar
Patrick von Platen committed
197
# load model and scheduler
Patrick von Platen's avatar
Patrick von Platen committed
198
ddpm = PNDM(unet=model, noise_scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
199
200

# run pipeline in inference (sample random noise and denoise)
Patrick von Platen's avatar
Patrick von Platen committed
201
202
with torch.no_grad():
    image = ddpm()
Patrick von Platen's avatar
Patrick von Platen committed
203

Patrick von Platen's avatar
Patrick von Platen committed
204
# process image to PIL
Patrick von Platen's avatar
Patrick von Platen committed
205
image_processed = image.cpu().permute(0, 2, 3, 1)
Patrick von Platen's avatar
Patrick von Platen committed
206
207
208
image_processed = (image_processed + 1.0) / 2
image_processed = torch.clamp(image_processed, 0.0, 1.0)
image_processed = image_processed * 255
Patrick von Platen's avatar
Patrick von Platen committed
209
210
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
Patrick von Platen's avatar
Patrick von Platen committed
211
212

# save image
Patrick von Platen's avatar
Patrick von Platen committed
213
image_pil.save("test.png")
Patrick von Platen's avatar
Patrick von Platen committed
214
215
```

Suraj Patil's avatar
Suraj Patil committed
216
#### **Text to Image generation with Latent Diffusion**
217

patil-suraj's avatar
patil-suraj committed
218
219
_Note: To use latent diffusion install transformers from [this branch](https://github.com/patil-suraj/transformers/tree/ldm-bert)._

220
221
222
223
224
```python
from diffusers import DiffusionPipeline

ldm = DiffusionPipeline.from_pretrained("fusing/latent-diffusion-text2im-large")

patil-suraj's avatar
patil-suraj committed
225
generator = torch.manual_seed(42)
226
227
228
229
230
231
232
233
234
235
236
237
238

prompt = "A painting of a squirrel eating a burger"
image = ldm([prompt], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=50)

image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = image_processed  * 255.
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])

# save image
image_pil.save("test.png")
```

Suraj Patil's avatar
Suraj Patil committed
239
 #### **Text to speech with BDDM**
Suraj Patil's avatar
Suraj Patil committed
240
241
242
243
244
245
246
247
248
249

_Follow the isnstructions [here](https://pytorch.org/hub/nvidia_deeplearningexamples_tacotron2/) to load tacotron2 model._

```python
import torch
from diffusers import BDDM, DiffusionPipeline

torch_device = "cuda"

# load the BDDM pipeline
patil-suraj's avatar
patil-suraj committed
250
bddm = DiffusionPipeline.from_pretrained("fusing/diffwave-vocoder-ljspeech")
Suraj Patil's avatar
Suraj Patil committed
251
252
253
254
255
256
257
258
259
260

# load tacotron2 to get the mel spectograms
tacotron2 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_tacotron2', model_math='fp16')
tacotron2 = tacotron2.to(torch_device).eval()

text = "Hello world, I missed you so much."

utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_tts_utils')
sequences, lengths = utils.prepare_input_sequence([text])

Suraj Patil's avatar
Suraj Patil committed
261
# generate mel spectograms using text
Suraj Patil's avatar
Suraj Patil committed
262
with torch.no_grad():
Suraj Patil's avatar
Suraj Patil committed
263
    mel_spec, _, _ = tacotron2.infer(sequences, lengths)
Suraj Patil's avatar
Suraj Patil committed
264

Suraj Patil's avatar
Suraj Patil committed
265
# generate the speech by passing mel spectograms to BDDM pipeline
Suraj Patil's avatar
Suraj Patil committed
266
generator = torch.manual_seed(0)
Suraj Patil's avatar
Suraj Patil committed
267
audio = bddm(mel_spec, generator, torch_device)
Suraj Patil's avatar
Suraj Patil committed
268

Suraj Patil's avatar
Suraj Patil committed
269
# save generated audio
Suraj Patil's avatar
Suraj Patil committed
270
271
272
273
from scipy.io.wavfile import write as wavwrite
sampling_rate = 22050
wavwrite("generated_audio.wav", sampling_rate, audio.squeeze().cpu().numpy())
```