README.md 6.87 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
# Diffusers

Patrick von Platen's avatar
Patrick von Platen committed
3
## Definitions
Patrick von Platen's avatar
Patrick von Platen committed
4

Patrick von Platen's avatar
Patrick von Platen committed
5
6
7
8
9
**Models**: Single neural network that models p_θ(x_t-1|x_t) and is trained to “denoise” to image
*Examples: UNet, Conditioned UNet, 3D UNet, Transformer UNet*

![model_diff_1_50](https://user-images.githubusercontent.com/23423619/171610307-dab0cd8b-75da-4d4e-9f5a-5922072e2bb5.png)

Patrick von Platen's avatar
Patrick von Platen committed
10
11
**Schedulers**: Algorithm to sample noise schedule for both *training* and *inference*. Defines alpha and beta schedule, timesteps, etc..
*Example: Gaussian DDPM, DDIM, PMLS, DEIN*
Patrick von Platen's avatar
Patrick von Platen committed
12
13
14
15
16
17
18
19

![sampling](https://user-images.githubusercontent.com/23423619/171608981-3ad05953-a684-4c82-89f8-62a459147a07.png)
![training](https://user-images.githubusercontent.com/23423619/171608964-b3260cce-e6b4-4841-959d-7d8ba4b8d1b2.png)

**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, CLIP
*Example: GLIDE,CompVis/Latent-Diffusion, Imagen, DALL-E*

![imagen](https://user-images.githubusercontent.com/23423619/171609001-c3f2c1c9-f597-4a16-9843-749bf3f9431c.png)
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
22
## 1. `diffusers` as a central modular diffusion and sampler library

Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
`diffusers` is more modularized than `transformers`. The idea is that researchers and engineers can use only parts of the library easily for the own use cases.
It could become a central place for all kinds of models, schedulers, training utils and processors that one can mix and match for one's own use case.
Both models and scredulers should be load- and saveable from the Hub.
Patrick von Platen's avatar
Patrick von Platen committed
26
27
28
29
30

Example:

```python
import torch
Patrick von Platen's avatar
Patrick von Platen committed
31
32
33
34
35
36
from diffusers import UNetModel, GaussianDDPMScheduler
import PIL
import numpy as np

generator = torch.Generator()
generator = generator.manual_seed(6694729458485568)
Patrick von Platen's avatar
Patrick von Platen committed
37
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
Patrick von Platen's avatar
Patrick von Platen committed
38
39
40
41
42
43
44
45
46
47

# 1. Load models
scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)

# 2. Sample gaussian noise
image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)

# 3. Denoise                                                                                                                                           
for t in reversed(range(len(scheduler))):
Patrick von Platen's avatar
Patrick von Platen committed
48
49
50
51
52
	# 1. predict noise residual
	with torch.no_grad():
		pred_noise_t = self.unet(image, t)

	# 2. compute alphas, betas
Patrick von Platen's avatar
Patrick von Platen committed
53
54
	alpha_prod_t = scheduler.get_alpha_prod(t)
	alpha_prod_t_prev = scheduler.get_alpha_prod(t - 1)
Patrick von Platen's avatar
Patrick von Platen committed
55
56
57
58
59
60
61
62
63
64
65
66
67
	beta_prod_t = 1 - alpha_prod_t
	beta_prod_t_prev = 1 - alpha_prod_t_prev

	# 3. compute predicted image from residual
	# First: compute predicted original image from predicted noise also called
	# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
	pred_original_image = (image - beta_prod_t.sqrt() * pred_noise_t) / alpha_prod_t.sqrt()

	# Second: Clip "predicted x_0"
	pred_original_image = torch.clamp(pred_original_image, -1, 1)

	# Third: Compute coefficients for pred_original_image x_0 and current image x_t
	# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
Patrick von Platen's avatar
Patrick von Platen committed
68
69
	pred_original_image_coeff = (alpha_prod_t_prev.sqrt() * scheduler.get_beta(t)) / beta_prod_t
	current_image_coeff = scheduler.get_alpha(t).sqrt() * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
70
71
72
73
74
75
76
77
78
	# Fourth: Compute predicted previous image µ_t
	# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
	pred_prev_image = pred_original_image_coeff * pred_original_image + current_image_coeff * image

	# 5. For t > 0, compute predicted variance βt (see formala (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
	# and sample from it to get previous image
	# x_{t-1} ~ N(pred_prev_image, variance) == add variane to pred_image
	if t > 0:
		variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.noise_scheduler.get_beta(t).sqrt()
Patrick von Platen's avatar
Patrick von Platen committed
79
		noise = scheduler.sample_noise(image.shape, device=image.device, generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
83
84
85
		prev_image = pred_prev_image + variance * noise
	else:
		prev_image = pred_prev_image

	# 6. Set current image to prev_image: x_t -> x_t-1
	image = prev_image
Patrick von Platen's avatar
Patrick von Platen committed
86

Patrick von Platen's avatar
Patrick von Platen committed
87
# process image to PIL
Patrick von Platen's avatar
Patrick von Platen committed
88
89
90
91
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
Patrick von Platen's avatar
Patrick von Platen committed
92
93

# save image
Patrick von Platen's avatar
Patrick von Platen committed
94
image_pil.save("test.png")
Patrick von Platen's avatar
Patrick von Platen committed
95
96
```

Patrick von Platen's avatar
Patrick von Platen committed
97
98
## 2. `diffusers` as a collection of most important Diffusion systems (GLIDE, Dalle, ...)
`models` directory in repository hosts the complete code necessary for running a diffusion system as well as to train it. A `DiffusionPipeline` class allows to easily run the diffusion model in inference:
Patrick von Platen's avatar
Patrick von Platen committed
99
100
101
102

Example:

```python
Suraj Patil's avatar
Suraj Patil committed
103
from diffusers import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
104
105
import PIL.Image
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
106

Patrick von Platen's avatar
Patrick von Platen committed
107
# load model and scheduler
Suraj Patil's avatar
Suraj Patil committed
108
ddpm = DiffusionPipeline.from_pretrained("fusing/ddpm-lsun-bedroom")
Patrick von Platen's avatar
Patrick von Platen committed
109
110

# run pipeline in inference (sample random noise and denoise)
Patrick von Platen's avatar
Patrick von Platen committed
111
112
image = ddpm()

Patrick von Platen's avatar
Patrick von Platen committed
113
# process image to PIL
Patrick von Platen's avatar
Patrick von Platen committed
114
115
116
117
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
Patrick von Platen's avatar
Patrick von Platen committed
118
119

# save image
Patrick von Platen's avatar
Patrick von Platen committed
120
image_pil.save("test.png")
Patrick von Platen's avatar
Patrick von Platen committed
121
122
```

Patrick von Platen's avatar
Patrick von Platen committed
123
124
125
126
## Library structure:

```
├── models
Patrick von Platen's avatar
Patrick von Platen committed
127
128
129
130
131
│   ├── audio
│   │   └── fastdiff
│   │       ├── modeling_fastdiff.py
│   │       ├── README.md
│   │       └── run_fastdiff.py
Patrick von Platen's avatar
Patrick von Platen committed
132
│   ├── __init__.py
Patrick von Platen's avatar
Patrick von Platen committed
133
134
135
136
137
138
│   └── vision
│       ├── dalle2
│       │   ├── modeling_dalle2.py
│       │   ├── README.md
│       │   └── run_dalle2.py
│       ├── ddpm
Patrick von Platen's avatar
Patrick von Platen committed
139
│       │   ├── example.py
Patrick von Platen's avatar
Patrick von Platen committed
140
141
142
143
144
│       │   ├── modeling_ddpm.py
│       │   ├── README.md
│       │   └── run_ddpm.py
│       ├── glide
│       │   ├── modeling_glide.py
Patrick von Platen's avatar
Patrick von Platen committed
145
│       │   ├── modeling_vqvae.py.py
Patrick von Platen's avatar
Patrick von Platen committed
146
│       │   ├── README.md
Patrick von Platen's avatar
Patrick von Platen committed
147
│       │   └── run_glide.py
Patrick von Platen's avatar
Patrick von Platen committed
148
149
150
151
│       ├── imagen
│       │   ├── modeling_dalle2.py
│       │   ├── README.md
│       │   └── run_dalle2.py
Patrick von Platen's avatar
Patrick von Platen committed
152
│       ├── __init__.py
Patrick von Platen's avatar
Patrick von Platen committed
153
154
155
156
│       └── latent_diffusion
│           ├── modeling_latent_diffusion.py
│           ├── README.md
│           └── run_latent_diffusion.py
Patrick von Platen's avatar
Patrick von Platen committed
157
158
159
160
├── pyproject.toml
├── README.md
├── setup.cfg
├── setup.py
Patrick von Platen's avatar
Patrick von Platen committed
161
162
163
164
165
166
├── src
│   └── diffusers
│       ├── configuration_utils.py
│       ├── __init__.py
│       ├── modeling_utils.py
│       ├── models
Patrick von Platen's avatar
Patrick von Platen committed
167
168
│       │   ├── __init__.py
│       │   ├── unet_glide.py
Patrick von Platen's avatar
Patrick von Platen committed
169
│       │   └── unet.py
Patrick von Platen's avatar
Patrick von Platen committed
170
│       ├── pipeline_utils.py
Patrick von Platen's avatar
Patrick von Platen committed
171
172
│       └── schedulers
│           ├── gaussian_ddpm.py
Patrick von Platen's avatar
Patrick von Platen committed
173
│           ├── __init__.py
Patrick von Platen's avatar
Patrick von Platen committed
174
175
176
├── tests
│   └── test_modeling_utils.py
```