README.md 7.62 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
# Diffusers

Patrick von Platen's avatar
Patrick von Platen committed
3
## Definitions
Patrick von Platen's avatar
Patrick von Platen committed
4

Patrick von Platen's avatar
Patrick von Platen committed
5
6
7
8
9
**Models**: Single neural network that models p_θ(x_t-1|x_t) and is trained to “denoise” to image
*Examples: UNet, Conditioned UNet, 3D UNet, Transformer UNet*

![model_diff_1_50](https://user-images.githubusercontent.com/23423619/171610307-dab0cd8b-75da-4d4e-9f5a-5922072e2bb5.png)

Patrick von Platen's avatar
Patrick von Platen committed
10
**Schedulers**: Algorithm to compute previous image according to alpha, beta schedule and to sample noise. Should be used for both *training* and *inference*.
Patrick von Platen's avatar
Patrick von Platen committed
11
*Example: Gaussian DDPM, DDIM, PMLS, DEIN*
Patrick von Platen's avatar
Patrick von Platen committed
12
13
14
15
16
17
18
19

![sampling](https://user-images.githubusercontent.com/23423619/171608981-3ad05953-a684-4c82-89f8-62a459147a07.png)
![training](https://user-images.githubusercontent.com/23423619/171608964-b3260cce-e6b4-4841-959d-7d8ba4b8d1b2.png)

**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, CLIP
*Example: GLIDE,CompVis/Latent-Diffusion, Imagen, DALL-E*

![imagen](https://user-images.githubusercontent.com/23423619/171609001-c3f2c1c9-f597-4a16-9843-749bf3f9431c.png)
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
22
## Quickstart

Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
26
27
```
git clone https://github.com/huggingface/diffusers.git
cd diffusers && pip install -e .
``

Patrick von Platen's avatar
Patrick von Platen committed
28
### 1. `diffusers` as a central modular diffusion and sampler library
Patrick von Platen's avatar
Patrick von Platen committed
29

Patrick von Platen's avatar
Patrick von Platen committed
30
31
`diffusers` is more modularized than `transformers`. The idea is that researchers and engineers can use only parts of the library easily for the own use cases.
It could become a central place for all kinds of models, schedulers, training utils and processors that one can mix and match for one's own use case.
Patrick von Platen's avatar
Patrick von Platen committed
32
Both models and schedulers should be load- and saveable from the Hub.
Patrick von Platen's avatar
Patrick von Platen committed
33

Patrick von Platen's avatar
Patrick von Platen committed
34
**Example for [DDPM](https://arxiv.org/abs/2006.11239):**
Patrick von Platen's avatar
Patrick von Platen committed
35
36
37

```python
import torch
Patrick von Platen's avatar
Patrick von Platen committed
38
39
40
from diffusers import UNetModel, GaussianDDPMScheduler
import PIL
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
41
import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
42

Patrick von Platen's avatar
Patrick von Platen committed
43
generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
44
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
Patrick von Platen's avatar
Patrick von Platen committed
45
46

# 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
47
noise_scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
Patrick von Platen's avatar
Patrick von Platen committed
48
49
50
model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)

# 2. Sample gaussian noise
Patrick von Platen's avatar
Patrick von Platen committed
51
image = noise_scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
52
53

# 3. Denoise                                                                                                                                           
Patrick von Platen's avatar
Patrick von Platen committed
54
55
56
57
58
num_prediction_steps = len(noise_scheduler)
for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
		# predict noise residual
		with torch.no_grad():
				residual = self.unet(image, t)
Patrick von Platen's avatar
Patrick von Platen committed
59

Patrick von Platen's avatar
Patrick von Platen committed
60
		# predict previous mean of image x_t-1
Patrick von Platen's avatar
Patrick von Platen committed
61
		pred_prev_image = noise_scheduler.compute_prev_image_step(residual, image, t)
Patrick von Platen's avatar
Patrick von Platen committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

		# optionally sample variance
		variance = 0
		if t > 0:
				noise = noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
				variance = noise_scheduler.get_variance(t).sqrt() * noise

		# set current image to prev_image: x_t -> x_t-1
		image = pred_prev_image + variance

# 5. process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])

# 6. save image
image_pil.save("test.png")
```

Patrick von Platen's avatar
Patrick von Platen committed
82
**Example for [DDIM](https://arxiv.org/abs/2010.02502):**
Patrick von Platen's avatar
Patrick von Platen committed
83
84
85
86
87
88

```python
import torch
from diffusers import UNetModel, DDIMScheduler
import PIL
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
89
import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

generator = torch.manual_seed(0)
torch_device = "cuda" if torch.cuda.is_available() else "cpu"

# 1. Load models
noise_scheduler = DDIMScheduler.from_config("fusing/ddpm-celeba-hq")
model = UNetModel.from_pretrained("fusing/ddpm-celeba-hq").to(torch_device)

# 2. Sample gaussian noise
image = noise_scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)

# 3. Denoise                                                                                                                                           
num_inference_steps = 50
eta = 0.0  # <- deterministic sampling

for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
		# 1. predict noise residual
		with torch.no_grad():
				residual = self.unet(image, inference_step_times[t])

		# 2. predict previous mean of image x_t-1
Patrick von Platen's avatar
Patrick von Platen committed
111
		pred_prev_image = noise_scheduler.compute_prev_image_step(residual, image, t, num_inference_steps, eta)
Patrick von Platen's avatar
Patrick von Platen committed
112
113
114
115
116
117
118
119
120
121
122

		# 3. optionally sample variance
		variance = 0
		if eta > 0:
				noise = noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
				variance = noise_scheduler.get_variance(t).sqrt() * eta * noise

		# 4. set current image to prev_image: x_t -> x_t-1
		image = pred_prev_image + variance

# 5. process image to PIL
Patrick von Platen's avatar
Patrick von Platen committed
123
124
125
126
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
Patrick von Platen's avatar
Patrick von Platen committed
127

Patrick von Platen's avatar
Patrick von Platen committed
128
# 6. save image
Patrick von Platen's avatar
Patrick von Platen committed
129
image_pil.save("test.png")
Patrick von Platen's avatar
Patrick von Platen committed
130
131
```

Patrick von Platen's avatar
Patrick von Platen committed
132
### 2. `diffusers` as a collection of most important Diffusion systems (GLIDE, Dalle, ...)
Patrick von Platen's avatar
Patrick von Platen committed
133
`models` directory in repository hosts the complete code necessary for running a diffusion system as well as to train it. A `DiffusionPipeline` class allows to easily run the diffusion model in inference:
Patrick von Platen's avatar
Patrick von Platen committed
134

Patrick von Platen's avatar
Patrick von Platen committed
135
**Example image generation with DDPM**
Patrick von Platen's avatar
Patrick von Platen committed
136
137

```python
Suraj Patil's avatar
Suraj Patil committed
138
from diffusers import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
139
140
import PIL.Image
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
141

Patrick von Platen's avatar
Patrick von Platen committed
142
# load model and scheduler
Suraj Patil's avatar
Suraj Patil committed
143
ddpm = DiffusionPipeline.from_pretrained("fusing/ddpm-lsun-bedroom")
Patrick von Platen's avatar
Patrick von Platen committed
144
145

# run pipeline in inference (sample random noise and denoise)
Patrick von Platen's avatar
Patrick von Platen committed
146
147
image = ddpm()

Patrick von Platen's avatar
Patrick von Platen committed
148
# process image to PIL
Patrick von Platen's avatar
Patrick von Platen committed
149
150
151
152
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
Patrick von Platen's avatar
Patrick von Platen committed
153
154

# save image
Patrick von Platen's avatar
Patrick von Platen committed
155
image_pil.save("test.png")
Patrick von Platen's avatar
Patrick von Platen committed
156
157
```

Patrick von Platen's avatar
Patrick von Platen committed
158
159
160
161
## Library structure:

```
├── models
Patrick von Platen's avatar
Patrick von Platen committed
162
163
164
165
166
│   ├── audio
│   │   └── fastdiff
│   │       ├── modeling_fastdiff.py
│   │       ├── README.md
│   │       └── run_fastdiff.py
Patrick von Platen's avatar
Patrick von Platen committed
167
│   ├── __init__.py
Patrick von Platen's avatar
Patrick von Platen committed
168
169
170
171
172
173
│   └── vision
│       ├── dalle2
│       │   ├── modeling_dalle2.py
│       │   ├── README.md
│       │   └── run_dalle2.py
│       ├── ddpm
Patrick von Platen's avatar
Patrick von Platen committed
174
│       │   ├── example.py
Patrick von Platen's avatar
Patrick von Platen committed
175
176
177
178
179
│       │   ├── modeling_ddpm.py
│       │   ├── README.md
│       │   └── run_ddpm.py
│       ├── glide
│       │   ├── modeling_glide.py
Patrick von Platen's avatar
Patrick von Platen committed
180
│       │   ├── modeling_vqvae.py.py
Patrick von Platen's avatar
Patrick von Platen committed
181
│       │   ├── README.md
Patrick von Platen's avatar
Patrick von Platen committed
182
│       │   └── run_glide.py
Patrick von Platen's avatar
Patrick von Platen committed
183
184
185
186
│       ├── imagen
│       │   ├── modeling_dalle2.py
│       │   ├── README.md
│       │   └── run_dalle2.py
Patrick von Platen's avatar
Patrick von Platen committed
187
│       ├── __init__.py
Patrick von Platen's avatar
Patrick von Platen committed
188
189
190
191
│       └── latent_diffusion
│           ├── modeling_latent_diffusion.py
│           ├── README.md
│           └── run_latent_diffusion.py
Patrick von Platen's avatar
Patrick von Platen committed
192
193
194
195
├── pyproject.toml
├── README.md
├── setup.cfg
├── setup.py
Patrick von Platen's avatar
Patrick von Platen committed
196
197
198
199
200
201
├── src
│   └── diffusers
│       ├── configuration_utils.py
│       ├── __init__.py
│       ├── modeling_utils.py
│       ├── models
Patrick von Platen's avatar
Patrick von Platen committed
202
203
│       │   ├── __init__.py
│       │   ├── unet_glide.py
Patrick von Platen's avatar
Patrick von Platen committed
204
│       │   └── unet.py
Patrick von Platen's avatar
Patrick von Platen committed
205
│       ├── pipeline_utils.py
Patrick von Platen's avatar
Patrick von Platen committed
206
207
│       └── schedulers
│           ├── gaussian_ddpm.py
Patrick von Platen's avatar
Patrick von Platen committed
208
│           ├── __init__.py
Patrick von Platen's avatar
Patrick von Platen committed
209
210
211
├── tests
│   └── test_modeling_utils.py
```