pipeline_utils.py 10.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
18
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
19
20
import os
from typing import Optional, Union
anton-l's avatar
Style  
anton-l committed
21

Pedro Cuenca's avatar
Pedro Cuenca committed
22
23
import torch

Patrick von Platen's avatar
up  
Patrick von Platen committed
24
from huggingface_hub import snapshot_download
25
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
26

Patrick von Platen's avatar
Patrick von Platen committed
27
from .configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
28
from .utils import DIFFUSERS_CACHE, logging
Patrick von Platen's avatar
improve  
Patrick von Platen committed
29

Patrick von Platen's avatar
Patrick von Platen committed
30

Patrick von Platen's avatar
Patrick von Platen committed
31
INDEX_FILE = "diffusion_pytorch_model.bin"
Patrick von Platen's avatar
Patrick von Platen committed
32
33
34
35
36
37
38


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
39
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
40
        "SchedulerMixin": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
41
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
42
43
    },
    "transformers": {
anton-l's avatar
anton-l committed
44
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
45
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
46
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Suraj Patil's avatar
Suraj Patil committed
47
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
48
49
50
    },
}

51
52
53
54
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
55

Patrick von Platen's avatar
Patrick von Platen committed
56
class DiffusionPipeline(ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
57
58
59

    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
60
    def register_modules(self, **kwargs):
61
62
        # import it here to avoid circular import
        from diffusers import pipelines
63

Patrick von Platen's avatar
Patrick von Platen committed
64
65
66
        for name, module in kwargs.items():
            # retrive library
            library = module.__module__.split(".")[0]
67

68
69
            # check if the module is a pipeline module
            pipeline_dir = module.__module__.split(".")[-2]
Suraj Patil's avatar
Suraj Patil committed
70
71
            path = module.__module__.split(".")
            is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
72

73
74
            # if library is not in LOADABLE_CLASSES, then it is a custom module.
            # Or if it's a pipeline module, then the module is inside the pipeline
75
            # folder so we set the library to module name.
76
            if library not in LOADABLE_CLASSES or is_pipeline_module:
77
                library = pipeline_dir
patil-suraj's avatar
patil-suraj committed
78

Patrick von Platen's avatar
Patrick von Platen committed
79
80
81
            # retrive class_name
            class_name = module.__class__.__name__

82
83
            register_dict = {name: (library, class_name)}

Patrick von Platen's avatar
Patrick von Platen committed
84
            # save model index config
85
            self.register_to_config(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
86
87
88

            # set models
            setattr(self, name, module)
89

Patrick von Platen's avatar
Patrick von Platen committed
90
91
92
    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        self.save_config(save_directory)

Patrick von Platen's avatar
Patrick von Platen committed
93
        model_index_dict = dict(self.config)
Patrick von Platen's avatar
Patrick von Platen committed
94
        model_index_dict.pop("_class_name")
95
        model_index_dict.pop("_diffusers_version")
96
        model_index_dict.pop("_module", None)
Patrick von Platen's avatar
Patrick von Platen committed
97

anton-l's avatar
anton-l committed
98
99
100
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
101
102

            save_method_name = None
anton-l's avatar
anton-l committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class)
                    if issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
117

Pedro Cuenca's avatar
Pedro Cuenca committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    def to(self, torch_device: Optional[Union[str, torch.device]] = None):
        if torch_device is None:
            return self

        module_names, _ = self.extract_init_dict(dict(self.config))
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
                module.to(torch_device)
        return self

    @property
    def device(self) -> torch.device:
        module_names, _ = self.extract_init_dict(dict(self.config))
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
                return module.device
        return torch.device("cpu")

Patrick von Platen's avatar
Patrick von Platen committed
138
139
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
140
        r"""
Patrick von Platen's avatar
Patrick von Platen committed
141
        Add docstrings
142
143
144
145
146
147
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
148
        revision = kwargs.pop("revision", None)
Patrick von Platen's avatar
Patrick von Platen committed
149

patil-suraj's avatar
patil-suraj committed
150
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
151
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
152
        if not os.path.isdir(pretrained_model_name_or_path):
153
154
155
156
157
158
159
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
160
                revision=revision,
161
            )
Patrick von Platen's avatar
Patrick von Platen committed
162
163
        else:
            cached_folder = pretrained_model_name_or_path
164

patil-suraj's avatar
patil-suraj committed
165
        config_dict = cls.get_config_dict(cached_folder)
166

Patrick von Platen's avatar
Patrick von Platen committed
167
        # 2. Load the pipeline class, if using custom module then load it from the hub
168
169
        # if we load from explicit class, let's use it
        if cls != DiffusionPipeline:
170
171
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
172
173
174
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

175
176
177
178
179
180
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules = set(inspect.signature(pipeline_class.__init__).parameters.keys())
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

181
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
182
183

        init_kwargs = {}
184

185
186
        # import it here to avoid circular import
        from diffusers import pipelines
187

Patrick von Platen's avatar
Patrick von Platen committed
188
        # 3. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
189
        for name, (library_name, class_name) in init_dict.items():
190
            is_pipeline_module = hasattr(pipelines, library_name)
191
192
            loaded_sub_model = None

193
            # if the model is in a pipeline module, then we load it from the pipeline
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
            if name in passed_class_obj:
                # 1. check that passed_class_obj has correct parent class
                if not is_pipeline_module:
                    library = importlib.import_module(library_name)
                    class_obj = getattr(library, class_name)
                    importable_classes = LOADABLE_CLASSES[library_name]
                    class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}

                    expected_class_obj = None
                    for class_name, class_candidate in class_candidates.items():
                        if issubclass(class_obj, class_candidate):
                            expected_class_obj = class_candidate

                    if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
                        raise ValueError(
                            f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
                            f" {expected_class_obj}"
                        )
                else:
                    logger.warn(
                        f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
                        " has the correct type"
                    )

                # set passed class object
                loaded_sub_model = passed_class_obj[name]
            elif is_pipeline_module:
221
222
223
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
Patrick von Platen's avatar
Patrick von Platen committed
224
                class_candidates = {c: class_obj for c in importable_classes.keys()}
patil-suraj's avatar
patil-suraj committed
225
            else:
patil-suraj's avatar
patil-suraj committed
226
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
227
228
                library = importlib.import_module(library_name)
                class_obj = getattr(library, class_name)
229
                importable_classes = LOADABLE_CLASSES[library_name]
patil-suraj's avatar
patil-suraj committed
230
                class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
231

232
233
234
235
236
            if loaded_sub_model is None:
                load_method_name = None
                for class_name, class_candidate in class_candidates.items():
                    if issubclass(class_obj, class_candidate):
                        load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
237

238
                load_method = getattr(class_obj, load_method_name)
Patrick von Platen's avatar
Patrick von Platen committed
239

240
241
242
243
244
245
                # check if the module is in a subdirectory
                if os.path.isdir(os.path.join(cached_folder, name)):
                    loaded_sub_model = load_method(os.path.join(cached_folder, name))
                else:
                    # else load from the root directory
                    loaded_sub_model = load_method(cached_folder)
Patrick von Platen's avatar
Patrick von Platen committed
246

247
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
248

249
        # 4. Instantiate the pipeline
250
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
251
        return model
252
253
254
255
256
257
258
259
260
261
262
263

    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        pil_images = [Image.fromarray(image) for image in images]

        return pil_images