pipeline_utils.py 19.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
18
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
19
import os
20
21
from dataclasses import dataclass
from typing import List, Optional, Union
anton-l's avatar
Style  
anton-l committed
22

23
import numpy as np
Pedro Cuenca's avatar
Pedro Cuenca committed
24
25
import torch

26
import diffusers
27
import PIL
Patrick von Platen's avatar
up  
Patrick von Platen committed
28
from huggingface_hub import snapshot_download
29
from PIL import Image
hysts's avatar
hysts committed
30
from tqdm.auto import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
31

Patrick von Platen's avatar
Patrick von Platen committed
32
from .configuration_utils import ConfigMixin
33
34
35
36
from .modeling_utils import WEIGHTS_NAME
from .onnx_utils import ONNX_WEIGHTS_NAME
from .schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from .utils import CONFIG_NAME, DIFFUSERS_CACHE, BaseOutput, logging
Patrick von Platen's avatar
improve  
Patrick von Platen committed
37

Patrick von Platen's avatar
Patrick von Platen committed
38

Patrick von Platen's avatar
Patrick von Platen committed
39
INDEX_FILE = "diffusion_pytorch_model.bin"
Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
43
44
45
46


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
47
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
48
        "SchedulerMixin": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
49
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
50
        "OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
51
52
    },
    "transformers": {
anton-l's avatar
anton-l committed
53
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
54
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
55
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Suraj Patil's avatar
Suraj Patil committed
56
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
57
58
59
    },
}

60
61
62
63
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


Patrick von Platen's avatar
Patrick von Platen committed
79
class DiffusionPipeline(ConfigMixin):
80
81
82
83
84
85
86
87
88
89
90
91
    r"""
    Base class for all models.

    [`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines
    and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to:

        - move all PyTorch modules to the device of your choice
        - enabling/disabling the progress bar for the denoising iteration

    Class attributes:

        - **config_name** ([`str`]) -- name of the config file that will store the class and module names of all
92
          components of the diffusion pipeline.
93
    """
Patrick von Platen's avatar
Patrick von Platen committed
94
95
    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
96
    def register_modules(self, **kwargs):
97
98
        # import it here to avoid circular import
        from diffusers import pipelines
99

Patrick von Platen's avatar
Patrick von Platen committed
100
        for name, module in kwargs.items():
101
            # retrieve library
Patrick von Platen's avatar
Patrick von Platen committed
102
            library = module.__module__.split(".")[0]
103

104
105
            # check if the module is a pipeline module
            pipeline_dir = module.__module__.split(".")[-2]
Suraj Patil's avatar
Suraj Patil committed
106
107
            path = module.__module__.split(".")
            is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
108

109
110
            # if library is not in LOADABLE_CLASSES, then it is a custom module.
            # Or if it's a pipeline module, then the module is inside the pipeline
111
            # folder so we set the library to module name.
112
            if library not in LOADABLE_CLASSES or is_pipeline_module:
113
                library = pipeline_dir
patil-suraj's avatar
patil-suraj committed
114

115
            # retrieve class_name
Patrick von Platen's avatar
Patrick von Platen committed
116
117
            class_name = module.__class__.__name__

118
119
            register_dict = {name: (library, class_name)}

Patrick von Platen's avatar
Patrick von Platen committed
120
            # save model index config
121
            self.register_to_config(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
122
123
124

            # set models
            setattr(self, name, module)
125

Patrick von Platen's avatar
Patrick von Platen committed
126
    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
127
128
129
130
131
132
133
134
135
        """
        Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to
        a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading
        method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
        """
Patrick von Platen's avatar
Patrick von Platen committed
136
137
        self.save_config(save_directory)

Patrick von Platen's avatar
Patrick von Platen committed
138
        model_index_dict = dict(self.config)
Patrick von Platen's avatar
Patrick von Platen committed
139
        model_index_dict.pop("_class_name")
140
        model_index_dict.pop("_diffusers_version")
141
        model_index_dict.pop("_module", None)
Patrick von Platen's avatar
Patrick von Platen committed
142

anton-l's avatar
anton-l committed
143
144
145
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
146
147

            save_method_name = None
anton-l's avatar
anton-l committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class)
                    if issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
162

Pedro Cuenca's avatar
Pedro Cuenca committed
163
164
165
166
167
168
169
170
171
172
173
174
175
    def to(self, torch_device: Optional[Union[str, torch.device]] = None):
        if torch_device is None:
            return self

        module_names, _ = self.extract_init_dict(dict(self.config))
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
                module.to(torch_device)
        return self

    @property
    def device(self) -> torch.device:
176
177
178
179
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
Pedro Cuenca's avatar
Pedro Cuenca committed
180
181
182
183
184
185
186
        module_names, _ = self.extract_init_dict(dict(self.config))
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
                return module.device
        return torch.device("cpu")

Patrick von Platen's avatar
Patrick von Platen committed
187
188
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
189
        r"""
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights.

        The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).

        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.

        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
        weights are discarded.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *repo id* of a pretrained pipeline hosted inside a model repo on
                      https://huggingface.co/ Valid repo ids have to be located under a user or organization name, like
                      `CompVis/ldm-text2im-large-256`.
                    - A path to a *directory* containing pipeline weights saved using
                      [`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
223
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information. specify the folder name here.

            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
240
                specific pipeline class. The overritten components are then directly passed to the pipelines `__init__`
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
                method. See example below for more information.

        <Tip>

        Passing `use_auth_token=True`` is required when you want to use a private model, *e.g.*
        `"CompVis/stable-diffusion-v1-4"`

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use
        this method in a firewalled environment.

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True)

        >>> # Download pipeline, but overwrite scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        >>> pipeline = DiffusionPipeline.from_pretrained(
        ...     "CompVis/stable-diffusion-v1-4", scheduler=scheduler, use_auth_token=True
        ... )
        ```
278
279
280
281
282
283
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
284
        revision = kwargs.pop("revision", None)
285
        torch_dtype = kwargs.pop("torch_dtype", None)
286
        provider = kwargs.pop("provider", None)
Patrick von Platen's avatar
Patrick von Platen committed
287

patil-suraj's avatar
patil-suraj committed
288
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
289
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
290
        if not os.path.isdir(pretrained_model_name_or_path):
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
            config_dict = cls.get_config_dict(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
            )
            # make sure we only download sub-folders and `diffusers` filenames
            folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
            allow_patterns = [os.path.join(k, "*") for k in folder_names]
            allow_patterns += [WEIGHTS_NAME, SCHEDULER_CONFIG_NAME, CONFIG_NAME, ONNX_WEIGHTS_NAME, cls.config_name]

            # download all allow_patterns
306
307
308
309
310
311
312
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
313
                revision=revision,
314
                allow_patterns=allow_patterns,
315
            )
Patrick von Platen's avatar
Patrick von Platen committed
316
317
        else:
            cached_folder = pretrained_model_name_or_path
318

patil-suraj's avatar
patil-suraj committed
319
        config_dict = cls.get_config_dict(cached_folder)
320

Patrick von Platen's avatar
Patrick von Platen committed
321
        # 2. Load the pipeline class, if using custom module then load it from the hub
322
323
        # if we load from explicit class, let's use it
        if cls != DiffusionPipeline:
324
325
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
326
327
328
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

329
330
331
332
333
334
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules = set(inspect.signature(pipeline_class.__init__).parameters.keys())
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

335
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
336
337

        init_kwargs = {}
338

339
340
        # import it here to avoid circular import
        from diffusers import pipelines
341

Patrick von Platen's avatar
Patrick von Platen committed
342
        # 3. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
343
        for name, (library_name, class_name) in init_dict.items():
344
345
346
347
            # 3.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
            if class_name.startswith("Flax"):
                class_name = class_name[4:]

348
            is_pipeline_module = hasattr(pipelines, library_name)
349
350
            loaded_sub_model = None

351
            # if the model is in a pipeline module, then we load it from the pipeline
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
            if name in passed_class_obj:
                # 1. check that passed_class_obj has correct parent class
                if not is_pipeline_module:
                    library = importlib.import_module(library_name)
                    class_obj = getattr(library, class_name)
                    importable_classes = LOADABLE_CLASSES[library_name]
                    class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}

                    expected_class_obj = None
                    for class_name, class_candidate in class_candidates.items():
                        if issubclass(class_obj, class_candidate):
                            expected_class_obj = class_candidate

                    if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
                        raise ValueError(
                            f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
                            f" {expected_class_obj}"
                        )
                else:
                    logger.warn(
                        f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
                        " has the correct type"
                    )

                # set passed class object
                loaded_sub_model = passed_class_obj[name]
            elif is_pipeline_module:
379
380
381
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
Patrick von Platen's avatar
Patrick von Platen committed
382
                class_candidates = {c: class_obj for c in importable_classes.keys()}
patil-suraj's avatar
patil-suraj committed
383
            else:
patil-suraj's avatar
patil-suraj committed
384
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
385
386
                library = importlib.import_module(library_name)
                class_obj = getattr(library, class_name)
387
                importable_classes = LOADABLE_CLASSES[library_name]
patil-suraj's avatar
patil-suraj committed
388
                class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
389

390
391
392
393
394
            if loaded_sub_model is None:
                load_method_name = None
                for class_name, class_candidate in class_candidates.items():
                    if issubclass(class_obj, class_candidate):
                        load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
395

396
                load_method = getattr(class_obj, load_method_name)
Patrick von Platen's avatar
Patrick von Platen committed
397

398
399
400
                loading_kwargs = {}
                if issubclass(class_obj, torch.nn.Module):
                    loading_kwargs["torch_dtype"] = torch_dtype
401
402
                if issubclass(class_obj, diffusers.OnnxRuntimeModel):
                    loading_kwargs["provider"] = provider
403

404
405
                # check if the module is in a subdirectory
                if os.path.isdir(os.path.join(cached_folder, name)):
406
                    loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
407
408
                else:
                    # else load from the root directory
409
                    loaded_sub_model = load_method(cached_folder, **loading_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
410

411
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
412

413
        # 4. Instantiate the pipeline
414
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
415
        return model
416
417
418
419
420
421
422
423
424
425
426
427

    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        pil_images = [Image.fromarray(image) for image in images]

        return pil_images
hysts's avatar
hysts committed
428
429
430
431
432
433
434
435
436
437
438
439
440

    def progress_bar(self, iterable):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        return tqdm(iterable, **self._progress_bar_config)

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs