test_pipelines.py 22.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
20
21
22
23
24
25
26
import tempfile
import unittest

import numpy as np
import torch

import PIL
from diffusers import (
27
    AutoencoderKL,
28
29
30
31
32
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    PNDMScheduler,
33
    StableDiffusionImg2ImgPipeline,
34
    StableDiffusionInpaintPipelineLegacy,
35
    StableDiffusionPipeline,
36
    UNet2DConditionModel,
37
    UNet2DModel,
38
    VQModel,
39
    logging,
40
41
)
from diffusers.pipeline_utils import DiffusionPipeline
42
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
43
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, slow, torch_device
44
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, require_torch_gpu
45
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
46
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
47
48
49
50
51


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
52
53
54
55
56
57
58
59
60
61
62
63
64
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
65
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
66
67
68
69
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
70
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
71
72
73
74
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
class DownloadTests(unittest.TestCase):
    def test_download_only_pytorch(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            _ = DiffusionPipeline.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a flax file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".msgpack") for f in files)

90
91
92
93
94
    def test_download_no_safety_checker(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
95
96
97
98
99
100
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
101
102
103
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
104
        pipe_2 = pipe_2.to(torch_device)
105
106
107
108
109
110
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
111
112
113
114
115
116
117
118

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_explicit_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
119
120
121
122
123
124
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
125
126
127
128
129
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
130
            pipe_2 = pipe_2.to(torch_device)
131
132
133
134
135
136
137
138

            if torch_device == "mps":
                # device type MPS is not supported for torch.Generator() api.
                generator = torch.manual_seed(0)
            else:
                generator = torch.Generator(device=torch_device).manual_seed(0)

            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
139
140
141
142
143
144

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_default_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
145
146
147
148
149
150
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
151
152
153
154
155
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
156
            pipe_2 = pipe_2.to(torch_device)
157
158
159
160
161
162
163
164

            if torch_device == "mps":
                # device type MPS is not supported for torch.Generator() api.
                generator = torch.manual_seed(0)
            else:
                generator = torch.Generator(device=torch_device).manual_seed(0)

            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
165
166
167

        assert np.max(np.abs(out - out_2)) < 1e-3

168

Patrick von Platen's avatar
Patrick von Platen committed
169
170
171
172
173
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
174
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
175
176
177
178
179
180
181
182
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
183
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
184
185
186
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
187

Patrick von Platen's avatar
Patrick von Platen committed
188
189
190
191
192
193
194
195
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

    def test_local_custom_pipeline(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
196
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
197
198
199
200
201
202
203
204
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

    @slow
205
    @require_torch_gpu
Patrick von Platen's avatar
Patrick von Platen committed
206
207
208
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

209
        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
210
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
211
212
213
214
215
216

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
217
218
            torch_dtype=torch.float16,
            revision="fp16",
Patrick von Platen's avatar
Patrick von Platen committed
219
        )
220
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
221
222
223
224
225
226
227
228
229
230
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
class PipelineFastTests(unittest.TestCase):
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    @property
    def dummy_cond_unet_inpaint(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

342
343
    def test_components(self):
        """Test that components property works correctly"""
344
        unet = self.dummy_cond_unet
345
        scheduler = PNDMScheduler(skip_prk_steps=True)
346
347
348
349
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

350
351
352
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
353
354

        # make sure here that pndm scheduler skips prk
355
        inpaint = StableDiffusionInpaintPipelineLegacy(
356
357
358
359
360
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
361
            safety_checker=None,
362
            feature_extractor=self.dummy_extractor,
363
364
365
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
366
367

        prompt = "A painting of a squirrel eating a burger"
368
369
370
371
372
373
374

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

375
        image_inpaint = inpaint(
376
377
378
379
380
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
381
382
383
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
384
385
386
387
388
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
389
390
391
        ).images
        image_text2img = text2img(
            [prompt],
392
393
394
            generator=generator,
            num_inference_steps=2,
            output_type="np",
395
        ).images
396

397
398
399
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
        assert image_text2img.shape == (1, 128, 128, 3)
400

401

402
403
@slow
class PipelineSlowTests(unittest.TestCase):
404
405
406
407
408
409
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

410
411
412
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
413
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

431
432
433
434
435
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        logger = logging.get_logger("diffusers.pipeline_utils")
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
436
                DiffusionPipeline.from_pretrained(
437
438
439
440
                    model_id,
                    not_used=True,
                    cache_dir=tmpdirname,
                    force_download=True,
441
                )
442
443
444

        assert cap_logger.out == "Keyword arguments {'not_used': True} not recognized.\n"

445
446
447
448
449
450
451
452
453
454
455
456
457
458
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
459
        ddpm.to(torch_device)
460
        ddpm.set_progress_bar_config(disable=None)
461
462
463

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
464
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
465
            new_ddpm.to(torch_device)
466

467
        generator = torch.Generator(device=torch_device).manual_seed(0)
468
        image = ddpm(generator=generator, output_type="numpy").images
469

470
        generator = generator.manual_seed(0)
471
        new_image = new_ddpm(generator=generator, output_type="numpy").images
472
473
474
475
476
477

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

478
        scheduler = DDPMScheduler(num_train_timesteps=10)
479

480
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
481
        ddpm = ddpm.to(torch_device)
482
        ddpm.set_progress_bar_config(disable=None)
483

484
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
485
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
486
        ddpm_from_hub.set_progress_bar_config(disable=None)
487

488
        generator = torch.Generator(device=torch_device).manual_seed(0)
489
        image = ddpm(generator=generator, output_type="numpy").images
490

491
        generator = generator.manual_seed(0)
492
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
493
494
495
496
497
498

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

499
500
        scheduler = DDPMScheduler(num_train_timesteps=10)

501
        # pass unet into DiffusionPipeline
502
503
        unet = UNet2DModel.from_pretrained(model_path)
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
504
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
505
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
506

507
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
508
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
509
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
510

511
        generator = torch.Generator(device=torch_device).manual_seed(0)
512
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
513

514
        generator = generator.manual_seed(0)
515
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
516
517
518
519
520
521

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

Patrick von Platen's avatar
Patrick von Platen committed
522
523
        scheduler = DDIMScheduler.from_config(model_path)
        pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
524
        pipe.to(torch_device)
525
        pipe.set_progress_bar_config(disable=None)
526

527
        generator = torch.Generator(device=torch_device).manual_seed(0)
528
        images = pipe(generator=generator, output_type="numpy").images
529
530
531
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

Patrick von Platen's avatar
Patrick von Platen committed
532
        images = pipe(generator=generator, output_type="pil", num_inference_steps=4).images
533
534
535
536
537
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
Patrick von Platen's avatar
Patrick von Platen committed
538
        images = pipe(generator=generator, num_inference_steps=4).images
539
540
541
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

542
543
    def test_ddpm_ddim_equality_batched(self):
        seed = 0
544
        model_id = "google/ddpm-cifar10-32"
545

546
        unet = UNet2DModel.from_pretrained(model_id)
547
548
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
549

550
551
552
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
553

554
555
556
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
557

558
559
        generator = torch.Generator(device=torch_device).manual_seed(seed)
        ddpm_images = ddpm(batch_size=2, generator=generator, output_type="numpy").images
560

561
        generator = torch.Generator(device=torch_device).manual_seed(seed)
562
        ddim_images = ddim(
563
            batch_size=2,
564
565
566
567
568
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
            output_type="numpy",
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
569
        ).images
570

571
572
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1