imagenet_main.py 11.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

23
24
from absl import app as absl_app
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
25
import tensorflow as tf  # pylint: disable=g-bad-import-order
26

27
from official.utils.flags import core as flags_core
28
from official.utils.logs import logger
29
from official.resnet import imagenet_preprocessing
30
31
from official.resnet import resnet_model
from official.resnet import resnet_run_loop
32

33
_DEFAULT_IMAGE_SIZE = 224
34
_NUM_CHANNELS = 3
35
_NUM_CLASSES = 1001
36

37
38
39
40
_NUM_IMAGES = {
    'train': 1281167,
    'validation': 50000,
}
41

42
_NUM_TRAIN_FILES = 1024
43
_SHUFFLE_BUFFER = 10000
44

45
DATASET_NAME = 'ImageNet'
46

47
48
49
###############################################################################
# Data processing
###############################################################################
50
def get_filenames(is_training, data_dir):
51
52
53
  """Return filenames for dataset."""
  if is_training:
    return [
54
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
55
        for i in range(_NUM_TRAIN_FILES)]
56
57
  else:
    return [
58
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
59
        for i in range(128)]
60
61


62
63
64
def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields (values are included as examples):

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>
84
85
86
87
88
89
90

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
91
92
93
94
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
95
96
97
98
99
100
  """
  # Dense features in Example proto.
  feature_map = {
      'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                          default_value=''),
      'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
101
102
103
                                              default_value=-1),
      'image/class/text': tf.FixedLenFeature([], dtype=tf.string,
                                             default_value=''),
104
  }
105
106
107
108
109
110
111
  sparse_float32 = tf.VarLenFeature(dtype=tf.float32)
  # Sparse features in Example proto.
  feature_map.update(
      {k: sparse_float32 for k in ['image/object/bbox/xmin',
                                   'image/object/bbox/ymin',
                                   'image/object/bbox/xmax',
                                   'image/object/bbox/ymax']})
112

113
  features = tf.parse_single_example(example_serialized, feature_map)
114
  label = tf.cast(features['image/class/label'], dtype=tf.int32)
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat([ymin, xmin, ymax, xmax], 0)

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
  bbox = tf.transpose(bbox, [0, 2, 1])

  return features['image/encoded'], label, bbox
130
131
132
133
134
135
136
137
138
139
140
141


def parse_record(raw_record, is_training):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
142

143
144
  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
145
146
147
148
149
150
  """
  image_buffer, label, bbox = _parse_example_proto(raw_record)

  image = imagenet_preprocessing.preprocess_image(
      image_buffer=image_buffer,
      bbox=bbox,
151
152
      output_height=_DEFAULT_IMAGE_SIZE,
      output_width=_DEFAULT_IMAGE_SIZE,
153
      num_channels=_NUM_CHANNELS,
154
155
      is_training=is_training)

156
  return image, label
157
158


Taylor Robie's avatar
Taylor Robie committed
159
def input_fn(is_training, data_dir, batch_size, num_epochs=1, num_gpus=None):
160
  """Input function which provides batches for train or eval.
Karmel Allison's avatar
Karmel Allison committed
161

162
163
164
165
166
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.
Taylor Robie's avatar
Taylor Robie committed
167
    num_gpus: The number of gpus used for training.
168
169
170
171
172
173

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
174

175
  if is_training:
176
177
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
178

179
180
181
182
183
184
185
  # Convert to individual records.
  # cycle_length = 10 means 10 files will be read and deserialized in parallel.
  # This number is low enough to not cause too much contention on small systems
  # but high enough to provide the benefits of parallelization. You may want
  # to increase this number if you have a large number of CPU cores.
  dataset = dataset.apply(tf.contrib.data.parallel_interleave(
      tf.data.TFRecordDataset, cycle_length=10))
186

187
  return resnet_run_loop.process_record_dataset(
Taylor Robie's avatar
Taylor Robie committed
188
189
190
191
192
193
194
195
      dataset=dataset,
      is_training=is_training,
      batch_size=batch_size,
      shuffle_buffer=_SHUFFLE_BUFFER,
      parse_record_fn=parse_record,
      num_epochs=num_epochs,
      num_gpus=num_gpus,
      examples_per_epoch=_NUM_IMAGES['train'] if is_training else None
196
  )
197
198
199


def get_synth_input_fn():
200
  return resnet_run_loop.get_synth_input_fn(
Karmel Allison's avatar
Karmel Allison committed
201
      _DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS, _NUM_CLASSES)
202
203


204
205
206
###############################################################################
# Running the model
###############################################################################
207
class ImagenetModel(resnet_model.Model):
Karmel Allison's avatar
Karmel Allison committed
208
  """Model class with appropriate defaults for Imagenet data."""
209

210
  def __init__(self, resnet_size, data_format=None, num_classes=_NUM_CLASSES,
211
               resnet_version=resnet_model.DEFAULT_VERSION,
212
               dtype=resnet_model.DEFAULT_DTYPE):
Neal Wu's avatar
Neal Wu committed
213
214
215
216
217
218
219
    """These are the parameters that work for Imagenet data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
220
        enables users to extend the same model to their own datasets.
221
222
      resnet_version: Integer representing which version of the ResNet network
        to use. See README for details. Valid values: [1, 2]
223
      dtype: The TensorFlow dtype to use for calculations.
Neal Wu's avatar
Neal Wu committed
224
    """
225
226
227

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
228
      bottleneck = False
229
230
      final_size = 512
    else:
231
      bottleneck = True
232
233
234
235
      final_size = 2048

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
236
        bottleneck=bottleneck,
237
        num_classes=num_classes,
238
239
240
241
242
243
244
245
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
        final_size=final_size,
246
        resnet_version=resnet_version,
247
248
249
        data_format=data_format,
        dtype=dtype
    )
250
251
252


def _get_block_sizes(resnet_size):
Karmel Allison's avatar
Karmel Allison committed
253
254
255
  """Retrieve the size of each block_layer in the ResNet model.

  The number of block layers used for the Resnet model varies according
256
257
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
Karmel Allison's avatar
Karmel Allison committed
258
259
260
261
262
263
264
265
266

  Args:
    resnet_size: The number of convolutional layers needed in the model.

  Returns:
    A list of block sizes to use in building the model.

  Raises:
    KeyError: if invalid resnet_size is received.
267
268
269
270
271
272
273
274
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
275
276
  }

277
278
279
280
281
282
283
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
               resnet_size, choices.keys()))
    raise ValueError(err)
284
285


286
287
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
288
  learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
289
290
291
      batch_size=params['batch_size'], batch_denom=256,
      num_images=_NUM_IMAGES['train'], boundary_epochs=[30, 60, 80, 90],
      decay_rates=[1, 0.1, 0.01, 0.001, 1e-4])
292

293
294
295
296
297
298
299
300
301
302
  return resnet_run_loop.resnet_model_fn(
      features=features,
      labels=labels,
      mode=mode,
      model_class=ImagenetModel,
      resnet_size=params['resnet_size'],
      weight_decay=1e-4,
      learning_rate_fn=learning_rate_fn,
      momentum=0.9,
      data_format=params['data_format'],
303
      resnet_version=params['resnet_version'],
304
305
306
307
      loss_scale=params['loss_scale'],
      loss_filter_fn=None,
      dtype=params['dtype']
  )
308
309


310
311
312
313
314
def define_imagenet_flags():
  resnet_run_loop.define_resnet_flags(
      resnet_size_choices=['18', '34', '50', '101', '152', '200'])
  flags.adopt_module_key_flags(resnet_run_loop)
  flags_core.set_defaults(train_epochs=100)
315

316

317
318
319
320
321
322
def run_imagenet(flags_obj):
  """Run ResNet ImageNet training and eval loop.

  Args:
    flags_obj: An object containing parsed flag values.
  """
323
324
  input_function = (flags_obj.use_synthetic_data and get_synth_input_fn()
                    or input_fn)
325
326

  resnet_run_loop.resnet_main(
327
      flags_obj, imagenet_model_fn, input_function, DATASET_NAME,
328
      shape=[_DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS])
329
330


331
def main(_):
332
333
  with logger.benchmark_context(flags.FLAGS):
    run_imagenet(flags.FLAGS)
334
335


336
337
if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
338
339
  define_imagenet_flags()
  absl_app.run(main)