resnet_run_loop.py 33.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains utility and supporting functions for ResNet.

  This module contains ResNet code which does not directly build layers. This
includes dataset management, hyperparameter and optimizer code, and argument
parsing. Code for defining the ResNet layers can be found in resnet_model.py.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

26
import functools
Taylor Robie's avatar
Taylor Robie committed
27
import math
Toby Boyd's avatar
Toby Boyd committed
28
import multiprocessing
29
30
import os

31

32
# pylint: disable=g-bad-import-order
33
from absl import flags
34
import tensorflow as tf
35
36

from official.resnet import resnet_model
37
from official.utils.flags import core as flags_core
38
from official.utils.export import export
39
40
from official.utils.logs import hooks_helper
from official.utils.logs import logger
41
from official.resnet import imagenet_preprocessing
42
from official.utils.misc import distribution_utils
43
from official.utils.misc import model_helpers
44
45
46
47
48


################################################################################
# Functions for input processing.
################################################################################
Toby Boyd's avatar
Toby Boyd committed
49
50
51
52
53
54
55
56
def process_record_dataset(dataset,
                           is_training,
                           batch_size,
                           shuffle_buffer,
                           parse_record_fn,
                           num_epochs=1,
                           dtype=tf.float32,
                           datasets_num_private_threads=None,
57
                           drop_remainder=False,
Rachel Lim's avatar
Rachel Lim committed
58
                           tf_data_experimental_slack=False):
Karmel Allison's avatar
Karmel Allison committed
59
  """Given a Dataset with raw records, return an iterator over the records.
60
61
62
63
64
65
66
67
68
69
70

  Args:
    dataset: A Dataset representing raw records
    is_training: A boolean denoting whether the input is for training.
    batch_size: The number of samples per batch.
    shuffle_buffer: The buffer size to use when shuffling records. A larger
      value results in better randomness, but smaller values reduce startup
      time and use less memory.
    parse_record_fn: A function that takes a raw record and returns the
      corresponding (image, label) pair.
    num_epochs: The number of epochs to repeat the dataset.
71
    dtype: Data type to use for images/features.
Toby Boyd's avatar
Toby Boyd committed
72
73
    datasets_num_private_threads: Number of threads for a private
      threadpool created for all datasets computation.
74
75
    drop_remainder: A boolean indicates whether to drop the remainder of the
      batches. If True, the batch dimension will be static.
76
77
    tf_data_experimental_slack: Whether to enable tf.data's
      `experimental_slack` option.
78
79
80
81

  Returns:
    Dataset of (image, label) pairs ready for iteration.
  """
82
83
84
85
86
87
88
89
  # Defines a specific size thread pool for tf.data operations.
  if datasets_num_private_threads:
    options = tf.data.Options()
    options.experimental_threading.private_threadpool_size = (
        datasets_num_private_threads)
    dataset = dataset.with_options(options)
    tf.compat.v1.logging.info('datasets_num_private_threads: %s',
                              datasets_num_private_threads)
90

Haoyu Zhang's avatar
Haoyu Zhang committed
91
92
93
94
95
  # Disable intra-op parallelism to optimize for throughput instead of latency.
  options = tf.data.Options()
  options.experimental_threading.max_intra_op_parallelism = 1
  dataset = dataset.with_options(options)

96
97
  # Prefetches a batch at a time to smooth out the time taken to load input
  # files for shuffling and processing.
98
99
  dataset = dataset.prefetch(buffer_size=batch_size)
  if is_training:
100
    # Shuffles records before repeating to respect epoch boundaries.
101
102
    dataset = dataset.shuffle(buffer_size=shuffle_buffer)

103
  # Repeats the dataset for the number of epochs to train.
104
105
  dataset = dataset.repeat(num_epochs)

106
  # Parses the raw records into images and labels.
Haoyu Zhang's avatar
Haoyu Zhang committed
107
108
109
  dataset = dataset.map(
      lambda value: parse_record_fn(value, is_training, dtype),
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
110
  dataset = dataset.batch(batch_size, drop_remainder=drop_remainder)
111
112
113
114

  # Operations between the final prefetch and the get_next call to the iterator
  # will happen synchronously during run time. We prefetch here again to
  # background all of the above processing work and keep it out of the
115
116
117
  # critical training path. Setting buffer_size to tf.contrib.data.AUTOTUNE
  # allows DistributionStrategies to adjust how many batches to fetch based
  # on how many devices are present.
118
  dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
119

120
121
122
123
124
  if tf_data_experimental_slack:
    options = tf.data.Options()
    options.experimental_slack = True
    dataset = dataset.with_options(options)

125
126
127
  return dataset


Toby Boyd's avatar
Toby Boyd committed
128
129
130
def get_synth_input_fn(height, width, num_channels, num_classes,
                       dtype=tf.float32):
  """Returns an input function that returns a dataset with random data.
131

Toby Boyd's avatar
Toby Boyd committed
132
133
134
135
  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
  tunning the full input pipeline.
136
137
138
139
140
141
142

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
Toby Boyd's avatar
Toby Boyd committed
143
    dtype: Data type for features/images.
144
145
146
147
148

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
Toby Boyd's avatar
Toby Boyd committed
149
150
151
152
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
    # Synthetic input should be within [0, 255].
153
    inputs = tf.random.truncated_normal(
Toby Boyd's avatar
Toby Boyd committed
154
155
156
157
158
159
        [batch_size] + [height, width, num_channels],
        dtype=dtype,
        mean=127,
        stddev=60,
        name='synthetic_inputs')

160
    labels = tf.random.uniform(
Toby Boyd's avatar
Toby Boyd committed
161
162
163
164
165
166
        [batch_size],
        minval=0,
        maxval=num_classes - 1,
        dtype=tf.int32,
        name='synthetic_labels')
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
167
    data = data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
Toby Boyd's avatar
Toby Boyd committed
168
    return data
169
170
171
172

  return input_fn


173
def image_bytes_serving_input_fn(image_shape, dtype=tf.float32):
174
175
176
177
178
  """Serving input fn for raw jpeg images."""

  def _preprocess_image(image_bytes):
    """Preprocess a single raw image."""
    # Bounding box around the whole image.
179
    bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=dtype, shape=[1, 1, 4])
180
181
182
183
184
    height, width, num_channels = image_shape
    image = imagenet_preprocessing.preprocess_image(
        image_bytes, bbox, height, width, num_channels, is_training=False)
    return image

185
  image_bytes_list = tf.compat.v1.placeholder(
186
187
      shape=[None], dtype=tf.string, name='input_tensor')
  images = tf.map_fn(
188
      _preprocess_image, image_bytes_list, back_prop=False, dtype=dtype)
189
190
191
192
  return tf.estimator.export.TensorServingInputReceiver(
      images, {'image_bytes': image_bytes_list})


Toby Boyd's avatar
Toby Boyd committed
193
def override_flags_and_set_envars_for_gpu_thread_pool(flags_obj):
Toby Boyd's avatar
Toby Boyd committed
194
  """Override flags and set env_vars for performance.
Toby Boyd's avatar
Toby Boyd committed
195
196
197
198
199
200
201

  These settings exist to test the difference between using stock settings
  and manual tuning. It also shows some of the ENV_VARS that can be tweaked to
  squeeze a few extra examples per second.  These settings are defaulted to the
  current platform of interest, which changes over time.

  On systems with small numbers of cpu cores, e.g. under 8 logical cores,
Toby Boyd's avatar
Toby Boyd committed
202
203
  setting up a gpu thread pool with `tf_gpu_thread_mode=gpu_private` may perform
  poorly.
Toby Boyd's avatar
Toby Boyd committed
204
205
206
207
208

  Args:
    flags_obj: Current flags, which will be adjusted possibly overriding
    what has been set by the user on the command-line.
  """
Toby Boyd's avatar
Toby Boyd committed
209
  cpu_count = multiprocessing.cpu_count()
210
  tf.compat.v1.logging.info('Logical CPU cores: %s', cpu_count)
Toby Boyd's avatar
Toby Boyd committed
211
212
213
214
215
216

  # Sets up thread pool for each GPU for op scheduling.
  per_gpu_thread_count = 1
  total_gpu_thread_count = per_gpu_thread_count * flags_obj.num_gpus
  os.environ['TF_GPU_THREAD_MODE'] = flags_obj.tf_gpu_thread_mode
  os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count)
217
218
219
220
  tf.compat.v1.logging.info('TF_GPU_THREAD_COUNT: %s',
                            os.environ['TF_GPU_THREAD_COUNT'])
  tf.compat.v1.logging.info('TF_GPU_THREAD_MODE: %s',
                            os.environ['TF_GPU_THREAD_MODE'])
Toby Boyd's avatar
Toby Boyd committed
221
222
223
224
225
226
227
228
229

  # Reduces general thread pool by number of threads used for GPU pool.
  main_thread_count = cpu_count - total_gpu_thread_count
  flags_obj.inter_op_parallelism_threads = main_thread_count

  # Sets thread count for tf.data. Logical cores minus threads assign to the
  # private GPU pool along with 2 thread per GPU for event monitoring and
  # sending / receiving tensors.
  num_monitoring_threads = 2 * flags_obj.num_gpus
Toby Boyd's avatar
Toby Boyd committed
230
231
  flags_obj.datasets_num_private_threads = (cpu_count - total_gpu_thread_count
                                            - num_monitoring_threads)
Toby Boyd's avatar
Toby Boyd committed
232
233


234
235
236
237
################################################################################
# Functions for running training/eval/validation loops for the model.
################################################################################
def learning_rate_with_decay(
238
239
    batch_size, batch_denom, num_images, boundary_epochs, decay_rates,
    base_lr=0.1, warmup=False):
240
241
242
243
244
245
246
247
248
249
250
  """Get a learning rate that decays step-wise as training progresses.

  Args:
    batch_size: the number of examples processed in each training batch.
    batch_denom: this value will be used to scale the base learning rate.
      `0.1 * batch size` is divided by this number, such that when
      batch_denom == batch_size, the initial learning rate will be 0.1.
    num_images: total number of images that will be used for training.
    boundary_epochs: list of ints representing the epochs at which we
      decay the learning rate.
    decay_rates: list of floats representing the decay rates to be used
251
252
      for scaling the learning rate. It should have one more element
      than `boundary_epochs`, and all elements should have the same type.
253
254
    base_lr: Initial learning rate scaled based on batch_denom.
    warmup: Run a 5 epoch warmup to the initial lr.
255
256
257
258
259
  Returns:
    Returns a function that takes a single argument - the number of batches
    trained so far (global_step)- and returns the learning rate to be used
    for training the next batch.
  """
260
  initial_learning_rate = base_lr * batch_size / batch_denom
261
262
  batches_per_epoch = num_images / batch_size

Taylor Robie's avatar
Taylor Robie committed
263
264
265
  # Reduce the learning rate at certain epochs.
  # CIFAR-10: divide by 10 at epoch 100, 150, and 200
  # ImageNet: divide by 10 at epoch 30, 60, 80, and 90
266
267
268
269
  boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs]
  vals = [initial_learning_rate * decay for decay in decay_rates]

  def learning_rate_fn(global_step):
270
    """Builds scaled learning rate function with 5 epoch warm up."""
271
    lr = tf.compat.v1.train.piecewise_constant(global_step, boundaries, vals)
272
273
274
275
276
    if warmup:
      warmup_steps = int(batches_per_epoch * 5)
      warmup_lr = (
          initial_learning_rate * tf.cast(global_step, tf.float32) / tf.cast(
              warmup_steps, tf.float32))
277
278
279
      return tf.cond(pred=global_step < warmup_steps,
                     true_fn=lambda: warmup_lr,
                     false_fn=lambda: lr)
280
    return lr
281

pkanwar23's avatar
pkanwar23 committed
282
283
284
285
286
287
288
289
290
  def poly_rate_fn(global_step):
    """Handles linear scaling rule, gradual warmup, and LR decay.

    The learning rate starts at 0, then it increases linearly per step.  After
    FLAGS.poly_warmup_epochs, we reach the base learning rate (scaled to account
    for batch size). The learning rate is then decayed using a polynomial rate
    decay schedule with power 2.0.

    Args:
Toby Boyd's avatar
Toby Boyd committed
291
      global_step: the current global_step
pkanwar23's avatar
pkanwar23 committed
292
293

    Returns:
Toby Boyd's avatar
Toby Boyd committed
294
      returns the current learning rate
pkanwar23's avatar
pkanwar23 committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    """

    # Learning rate schedule for LARS polynomial schedule
    if flags.FLAGS.batch_size < 8192:
      plr = 5.0
      w_epochs = 5
    elif flags.FLAGS.batch_size < 16384:
      plr = 10.0
      w_epochs = 5
    elif flags.FLAGS.batch_size < 32768:
      plr = 25.0
      w_epochs = 5
    else:
      plr = 32.0
      w_epochs = 14

    w_steps = int(w_epochs * batches_per_epoch)
    wrate = (plr * tf.cast(global_step, tf.float32) / tf.cast(
        w_steps, tf.float32))

    # TODO(pkanwar): use a flag to help calc num_epochs.
    num_epochs = 90
    train_steps = batches_per_epoch * num_epochs

    min_step = tf.constant(1, dtype=tf.int64)
    decay_steps = tf.maximum(min_step, tf.subtract(global_step, w_steps))
    poly_rate = tf.train.polynomial_decay(
        plr,
        decay_steps,
        train_steps - w_steps + 1,
        power=2.0)
    return tf.where(global_step <= w_steps, wrate, poly_rate)

  # For LARS we have a new learning rate schedule
  if flags.FLAGS.enable_lars:
    return poly_rate_fn

332
333
334
335
336
  return learning_rate_fn


def resnet_model_fn(features, labels, mode, model_class,
                    resnet_size, weight_decay, learning_rate_fn, momentum,
337
                    data_format, resnet_version, loss_scale,
Zac Wellmer's avatar
Zac Wellmer committed
338
                    loss_filter_fn=None, dtype=resnet_model.DEFAULT_DTYPE,
pkanwar23's avatar
pkanwar23 committed
339
                    fine_tune=False, label_smoothing=0.0):
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
  """Shared functionality for different resnet model_fns.

  Initializes the ResnetModel representing the model layers
  and uses that model to build the necessary EstimatorSpecs for
  the `mode` in question. For training, this means building losses,
  the optimizer, and the train op that get passed into the EstimatorSpec.
  For evaluation and prediction, the EstimatorSpec is returned without
  a train op, but with the necessary parameters for the given mode.

  Args:
    features: tensor representing input images
    labels: tensor representing class labels for all input images
    mode: current estimator mode; should be one of
      `tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`
    model_class: a class representing a TensorFlow model that has a __call__
      function. We assume here that this is a subclass of ResnetModel.
    resnet_size: A single integer for the size of the ResNet model.
    weight_decay: weight decay loss rate used to regularize learned variables.
    learning_rate_fn: function that returns the current learning rate given
      the current global_step
    momentum: momentum term used for optimization
    data_format: Input format ('channels_last', 'channels_first', or None).
      If set to None, the format is dependent on whether a GPU is available.
363
364
    resnet_version: Integer representing which version of the ResNet network to
      use. See README for details. Valid values: [1, 2]
365
366
    loss_scale: The factor to scale the loss for numerical stability. A detailed
      summary is present in the arg parser help text.
367
368
369
370
    loss_filter_fn: function that takes a string variable name and returns
      True if the var should be included in loss calculation, and False
      otherwise. If None, batch_normalization variables will be excluded
      from the loss.
371
    dtype: the TensorFlow dtype to use for calculations.
Zac Wellmer's avatar
Zac Wellmer committed
372
    fine_tune: If True only train the dense layers(final layers).
Toby Boyd's avatar
Toby Boyd committed
373
    label_smoothing: If greater than 0 then smooth the labels.
374
375
376
377
378
379
380

  Returns:
    EstimatorSpec parameterized according to the input params and the
    current mode.
  """

  # Generate a summary node for the images
381
  tf.compat.v1.summary.image('images', features, max_outputs=6)
382
383
  # Checks that features/images have same data type being used for calculations.
  assert features.dtype == dtype
384

385
386
  model = model_class(resnet_size, data_format, resnet_version=resnet_version,
                      dtype=dtype)
387

388
389
  logits = model(features, mode == tf.estimator.ModeKeys.TRAIN)

390
391
392
393
394
  # This acts as a no-op if the logits are already in fp32 (provided logits are
  # not a SparseTensor). If dtype is is low precision, logits must be cast to
  # fp32 for numerical stability.
  logits = tf.cast(logits, tf.float32)

395
  predictions = {
396
      'classes': tf.argmax(input=logits, axis=1),
397
398
399
400
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
401
402
403
404
405
406
407
    # Return the predictions and the specification for serving a SavedModel
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=predictions,
        export_outputs={
            'predict': tf.estimator.export.PredictOutput(predictions)
        })
408
409

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
pkanwar23's avatar
pkanwar23 committed
410
411
412
413
414
415
  if label_smoothing != 0.0:
    one_hot_labels = tf.one_hot(labels, 1001)
    cross_entropy = tf.losses.softmax_cross_entropy(
        logits=logits, onehot_labels=one_hot_labels,
        label_smoothing=label_smoothing)
  else:
Toby Boyd's avatar
Toby Boyd committed
416
    cross_entropy = tf.compat.v1.losses.sparse_softmax_cross_entropy(
pkanwar23's avatar
pkanwar23 committed
417
        logits=logits, labels=labels)
418
419
420

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
421
  tf.compat.v1.summary.scalar('cross_entropy', cross_entropy)
422
423
424

  # If no loss_filter_fn is passed, assume we want the default behavior,
  # which is that batch_normalization variables are excluded from loss.
Karmel Allison's avatar
Karmel Allison committed
425
426
427
  def exclude_batch_norm(name):
    return 'batch_normalization' not in name
  loss_filter_fn = loss_filter_fn or exclude_batch_norm
428

429
  # Add weight decay to the loss.
430
  l2_loss = weight_decay * tf.add_n(
431
      # loss is computed using fp32 for numerical stability.
432
433
      [
          tf.nn.l2_loss(tf.cast(v, tf.float32))
434
          for v in tf.compat.v1.trainable_variables()
435
          if loss_filter_fn(v.name)
436
      ])
437
  tf.compat.v1.summary.scalar('l2_loss', l2_loss)
438
  loss = cross_entropy + l2_loss
439
440

  if mode == tf.estimator.ModeKeys.TRAIN:
441
    global_step = tf.compat.v1.train.get_or_create_global_step()
442
443
444
445
446

    learning_rate = learning_rate_fn(global_step)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
447
    tf.compat.v1.summary.scalar('learning_rate', learning_rate)
448

pkanwar23's avatar
pkanwar23 committed
449
450
451
452
453
454
455
456
457
458
459
    if flags.FLAGS.enable_lars:
      optimizer = tf.contrib.opt.LARSOptimizer(
          learning_rate,
          momentum=momentum,
          weight_decay=weight_decay,
          skip_list=['batch_normalization', 'bias'])
    else:
      optimizer = tf.compat.v1.train.MomentumOptimizer(
          learning_rate=learning_rate,
          momentum=momentum
      )
460

461
462
    fp16_implementation = getattr(flags.FLAGS, 'fp16_implementation', None)
    if fp16_implementation == 'graph_rewrite':
463
      optimizer = tf.compat.v1.train.experimental.enable_mixed_precision_graph_rewrite(
464
465
          optimizer, loss_scale=loss_scale)

Zac Wellmer's avatar
Zac Wellmer committed
466
    def _dense_grad_filter(gvs):
467
468
469
470
      """Only apply gradient updates to the final layer.

      This function is used for fine tuning.

Zac Wellmer's avatar
Zac Wellmer committed
471
      Args:
472
        gvs: list of tuples with gradients and variable info
Zac Wellmer's avatar
Zac Wellmer committed
473
      Returns:
474
475
        filtered gradients so that only the dense layer remains
      """
Zac Wellmer's avatar
Zac Wellmer committed
476
477
      return [(g, v) for g, v in gvs if 'dense' in v.name]

478
    if loss_scale != 1 and fp16_implementation != 'graph_rewrite':
479
480
481
482
483
      # When computing fp16 gradients, often intermediate tensor values are
      # so small, they underflow to 0. To avoid this, we multiply the loss by
      # loss_scale to make these tensor values loss_scale times bigger.
      scaled_grad_vars = optimizer.compute_gradients(loss * loss_scale)

Zac Wellmer's avatar
Zac Wellmer committed
484
485
486
      if fine_tune:
        scaled_grad_vars = _dense_grad_filter(scaled_grad_vars)

487
488
489
490
491
492
      # Once the gradient computation is complete we can scale the gradients
      # back to the correct scale before passing them to the optimizer.
      unscaled_grad_vars = [(grad / loss_scale, var)
                            for grad, var in scaled_grad_vars]
      minimize_op = optimizer.apply_gradients(unscaled_grad_vars, global_step)
    else:
Zac Wellmer's avatar
Zac Wellmer committed
493
494
495
496
      grad_vars = optimizer.compute_gradients(loss)
      if fine_tune:
        grad_vars = _dense_grad_filter(grad_vars)
      minimize_op = optimizer.apply_gradients(grad_vars, global_step)
497

498
    update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS)
499
    train_op = tf.group(minimize_op, update_ops)
500
501
502
  else:
    train_op = None

503
504
505
  accuracy = tf.compat.v1.metrics.accuracy(labels, predictions['classes'])
  accuracy_top_5 = tf.compat.v1.metrics.mean(
      tf.nn.in_top_k(predictions=logits, targets=labels, k=5, name='top_5_op'))
506
507
  metrics = {'accuracy': accuracy,
             'accuracy_top_5': accuracy_top_5}
508
509
510

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
511
  tf.identity(accuracy_top_5[1], name='train_accuracy_top_5')
512
513
  tf.compat.v1.summary.scalar('train_accuracy', accuracy[1])
  tf.compat.v1.summary.scalar('train_accuracy_top_5', accuracy_top_5[1])
514
515
516
517
518

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
519
520
      train_op=train_op,
      eval_metric_ops=metrics)
521
522


523
524
def resnet_main(
    flags_obj, model_function, input_function, dataset_name, shape=None):
525
526
527
  """Shared main loop for ResNet Models.

  Args:
528
529
    flags_obj: An object containing parsed flags. See define_resnet_flags()
      for details.
530
531
532
533
534
    model_function: the function that instantiates the Model and builds the
      ops for train/eval. This will be passed directly into the estimator.
    input_function: the function that processes the dataset and returns a
      dataset that the estimator can train on. This will be wrapped with
      all the relevant flags for running and passed to estimator.
535
536
    dataset_name: the name of the dataset for training and evaluation. This is
      used for logging purpose.
537
    shape: list of ints representing the shape of the images used for training.
538
      This is only used if flags_obj.export_dir is passed.
539

540
541
  Returns:
     Dict of results of the run.  Contains the keys `eval_results` and
542
543
    `train_hooks`. `eval_results` contains accuracy (top_1) and accuracy_top_5.
    `train_hooks` is a list the instances of hooks used during training.
544
  """
Karmel Allison's avatar
Karmel Allison committed
545

546
547
  model_helpers.apply_clean(flags.FLAGS)

Toby Boyd's avatar
Toby Boyd committed
548
  # Ensures flag override logic is only executed if explicitly triggered.
Toby Boyd's avatar
Toby Boyd committed
549
  if flags_obj.tf_gpu_thread_mode:
Toby Boyd's avatar
Toby Boyd committed
550
    override_flags_and_set_envars_for_gpu_thread_pool(flags_obj)
Toby Boyd's avatar
Toby Boyd committed
551

552
553
554
555
  # Configures cluster spec for distribution strategy.
  num_workers = distribution_utils.configure_cluster(flags_obj.worker_hosts,
                                                     flags_obj.task_index)

Toby Boyd's avatar
Toby Boyd committed
556
557
  # Creates session config. allow_soft_placement = True, is required for
  # multi-GPU and is not harmful for other modes.
558
  session_config = tf.compat.v1.ConfigProto(
Toby Boyd's avatar
Toby Boyd committed
559
560
561
      inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads,
      intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads,
      allow_soft_placement=True)
562

563
  distribution_strategy = distribution_utils.get_distribution_strategy(
564
565
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_core.get_num_gpus(flags_obj),
566
      num_workers=num_workers,
567
568
      all_reduce_alg=flags_obj.all_reduce_alg,
      num_packs=flags_obj.num_packs)
569

Toby Boyd's avatar
Toby Boyd committed
570
  # Creates a `RunConfig` that checkpoints every 24 hours which essentially
Toby Boyd's avatar
Toby Boyd committed
571
  # results in checkpoints determined only by `epochs_between_evals`.
572
  run_config = tf.estimator.RunConfig(
Toby Boyd's avatar
Toby Boyd committed
573
574
      train_distribute=distribution_strategy,
      session_config=session_config,
575
      save_checkpoints_secs=60*60*24,
576
      save_checkpoints_steps=None)
577

Toby Boyd's avatar
Toby Boyd committed
578
  # Initializes model with all but the dense layer from pretrained ResNet.
Zac Wellmer's avatar
Zac Wellmer committed
579
580
581
582
583
584
585
  if flags_obj.pretrained_model_checkpoint_path is not None:
    warm_start_settings = tf.estimator.WarmStartSettings(
        flags_obj.pretrained_model_checkpoint_path,
        vars_to_warm_start='^(?!.*dense)')
  else:
    warm_start_settings = None

586
  classifier = tf.estimator.Estimator(
587
      model_fn=model_function, model_dir=flags_obj.model_dir, config=run_config,
Zac Wellmer's avatar
Zac Wellmer committed
588
      warm_start_from=warm_start_settings, params={
589
590
591
          'resnet_size': int(flags_obj.resnet_size),
          'data_format': flags_obj.data_format,
          'batch_size': flags_obj.batch_size,
592
          'resnet_version': int(flags_obj.resnet_version),
593
594
          'loss_scale': flags_core.get_loss_scale(flags_obj,
                                                  default_for_fp16=128),
Zac Wellmer's avatar
Zac Wellmer committed
595
          'dtype': flags_core.get_tf_dtype(flags_obj),
596
597
          'fine_tune': flags_obj.fine_tune,
          'num_workers': num_workers,
598
599
      })

600
601
602
603
  run_params = {
      'batch_size': flags_obj.batch_size,
      'dtype': flags_core.get_tf_dtype(flags_obj),
      'resnet_size': flags_obj.resnet_size,
604
      'resnet_version': flags_obj.resnet_version,
605
606
      'synthetic_data': flags_obj.use_synthetic_data,
      'train_epochs': flags_obj.train_epochs,
607
      'num_workers': num_workers,
608
  }
609
  if flags_obj.use_synthetic_data:
610
    dataset_name = dataset_name + '-synthetic'
611

612
  benchmark_logger = logger.get_benchmark_logger()
613
614
  benchmark_logger.log_run_info('resnet', dataset_name, run_params,
                                test_id=flags_obj.benchmark_test_id)
615

616
  train_hooks = hooks_helper.get_train_hooks(
617
      flags_obj.hooks,
618
      model_dir=flags_obj.model_dir,
619
      batch_size=flags_obj.batch_size)
620

621
  def input_fn_train(num_epochs, input_context=None):
622
    return input_function(
Toby Boyd's avatar
Toby Boyd committed
623
624
        is_training=True,
        data_dir=flags_obj.data_dir,
625
        batch_size=distribution_utils.per_replica_batch_size(
626
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
Taylor Robie's avatar
Taylor Robie committed
627
        num_epochs=num_epochs,
Toby Boyd's avatar
Toby Boyd committed
628
629
        dtype=flags_core.get_tf_dtype(flags_obj),
        datasets_num_private_threads=flags_obj.datasets_num_private_threads,
630
        input_context=input_context)
631

632
  def input_fn_eval():
633
    return input_function(
Toby Boyd's avatar
Toby Boyd committed
634
635
        is_training=False,
        data_dir=flags_obj.data_dir,
636
        batch_size=distribution_utils.per_replica_batch_size(
637
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
638
639
        num_epochs=1,
        dtype=flags_core.get_tf_dtype(flags_obj))
Taylor Robie's avatar
Taylor Robie committed
640

641
642
643
  train_epochs = (0 if flags_obj.eval_only or not flags_obj.train_epochs else
                  flags_obj.train_epochs)

644
  use_train_and_evaluate = flags_obj.use_train_and_evaluate or num_workers > 1
645
646
  if use_train_and_evaluate:
    train_spec = tf.estimator.TrainSpec(
647
648
649
        input_fn=lambda input_context=None: input_fn_train(
            train_epochs, input_context=input_context),
        hooks=train_hooks,
650
        max_steps=flags_obj.max_train_steps)
651
    eval_spec = tf.estimator.EvalSpec(input_fn=input_fn_eval)
652
    tf.compat.v1.logging.info('Starting to train and evaluate.')
653
654
655
    tf.estimator.train_and_evaluate(classifier, train_spec, eval_spec)
    # tf.estimator.train_and_evalute doesn't return anything in multi-worker
    # case.
656
    eval_results = {}
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
  else:
    if train_epochs == 0:
      # If --eval_only is set, perform a single loop with zero train epochs.
      schedule, n_loops = [0], 1
    else:
      # Compute the number of times to loop while training. All but the last
      # pass will train for `epochs_between_evals` epochs, while the last will
      # train for the number needed to reach `training_epochs`. For instance if
      #   train_epochs = 25 and epochs_between_evals = 10
      # schedule will be set to [10, 10, 5]. That is to say, the loop will:
      #   Train for 10 epochs and then evaluate.
      #   Train for another 10 epochs and then evaluate.
      #   Train for a final 5 epochs (to reach 25 epochs) and then evaluate.
      n_loops = math.ceil(train_epochs / flags_obj.epochs_between_evals)
      schedule = [flags_obj.epochs_between_evals for _ in range(int(n_loops))]
      schedule[-1] = train_epochs - sum(schedule[:-1])  # over counting.

    for cycle_index, num_train_epochs in enumerate(schedule):
      tf.compat.v1.logging.info('Starting cycle: %d/%d', cycle_index,
                                int(n_loops))

      if num_train_epochs:
679
680
681
682
        # Since we are calling classifier.train immediately in each loop, the
        # value of num_train_epochs in the lambda function will not be changed
        # before it is used. So it is safe to ignore the pylint error here
        # pylint: disable=cell-var-from-loop
683
684
685
686
687
        classifier.train(
            input_fn=lambda input_context=None: input_fn_train(
                num_train_epochs, input_context=input_context),
            hooks=train_hooks,
            max_steps=flags_obj.max_train_steps)
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

      # flags_obj.max_train_steps is generally associated with testing and
      # profiling. As a result it is frequently called with synthetic data,
      # which will iterate forever. Passing steps=flags_obj.max_train_steps
      # allows the eval (which is generally unimportant in those circumstances)
      # to terminate.  Note that eval will run for max_train_steps each loop,
      # regardless of the global_step count.
      tf.compat.v1.logging.info('Starting to evaluate.')
      eval_results = classifier.evaluate(input_fn=input_fn_eval,
                                         steps=flags_obj.max_train_steps)

      benchmark_logger.log_evaluation_result(eval_results)

      if model_helpers.past_stop_threshold(
          flags_obj.stop_threshold, eval_results['accuracy']):
        break
704

705
  if flags_obj.export_dir is not None:
706
    # Exports a saved model for the given classifier.
707
    export_dtype = flags_core.get_tf_dtype(flags_obj)
708
    if flags_obj.image_bytes_as_serving_input:
709
710
      input_receiver_fn = functools.partial(
          image_bytes_serving_input_fn, shape, dtype=export_dtype)
711
712
    else:
      input_receiver_fn = export.build_tensor_serving_input_receiver_fn(
713
714
715
          shape, batch_size=flags_obj.batch_size, dtype=export_dtype)
    classifier.export_savedmodel(flags_obj.export_dir, input_receiver_fn,
                                 strip_default_attrs=True)
716
717
718
719
720
721
722

  stats = {}
  stats['eval_results'] = eval_results
  stats['train_hooks'] = train_hooks

  return stats

723

724
725
def define_resnet_flags(resnet_size_choices=None, dynamic_loss_scale=False,
                        fp16_implementation=False):
726
727
  """Add flags and validators for ResNet."""
  flags_core.define_base()
Toby Boyd's avatar
Toby Boyd committed
728
729
730
  flags_core.define_performance(num_parallel_calls=False,
                                tf_gpu_thread_mode=True,
                                datasets_num_private_threads=True,
731
                                dynamic_loss_scale=dynamic_loss_scale,
732
                                fp16_implementation=fp16_implementation,
733
                                loss_scale=True,
Rachel Lim's avatar
Rachel Lim committed
734
                                tf_data_experimental_slack=True)
735
736
737
  flags_core.define_image()
  flags_core.define_benchmark()
  flags.adopt_module_key_flags(flags_core)
738

739
  flags.DEFINE_enum(
Toby Boyd's avatar
Toby Boyd committed
740
      name='resnet_version', short_name='rv', default='1',
741
      enum_values=['1', '2'],
742
743
      help=flags_core.help_wrap(
          'Version of ResNet. (1 or 2) See README.md for details.'))
Zac Wellmer's avatar
Zac Wellmer committed
744
745
746
747
748
749
750
751
752
  flags.DEFINE_bool(
      name='fine_tune', short_name='ft', default=False,
      help=flags_core.help_wrap(
          'If True do not train any parameters except for the final layer.'))
  flags.DEFINE_string(
      name='pretrained_model_checkpoint_path', short_name='pmcp', default=None,
      help=flags_core.help_wrap(
          'If not None initialize all the network except the final layer with '
          'these values'))
Taylor Robie's avatar
Taylor Robie committed
753
  flags.DEFINE_boolean(
754
      name='eval_only', default=False,
Taylor Robie's avatar
Taylor Robie committed
755
756
      help=flags_core.help_wrap('Skip training and only perform evaluation on '
                                'the latest checkpoint.'))
757
  flags.DEFINE_boolean(
Toby Boyd's avatar
Toby Boyd committed
758
      name='image_bytes_as_serving_input', default=False,
759
760
761
762
763
764
765
      help=flags_core.help_wrap(
          'If True exports savedmodel with serving signature that accepts '
          'JPEG image bytes instead of a fixed size [HxWxC] tensor that '
          'represents the image. The former is easier to use for serving at '
          'the expense of image resize/cropping being done as part of model '
          'inference. Note, this flag only applies to ImageNet and cannot '
          'be used for CIFAR.'))
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
  flags.DEFINE_boolean(
      name='use_train_and_evaluate', default=False,
      help=flags_core.help_wrap(
          'If True, uses `tf.estimator.train_and_evaluate` for the training '
          'and evaluation loop, instead of separate calls to `classifier.train '
          'and `classifier.evaluate`, which is the default behavior.'))
  flags.DEFINE_string(
      name='worker_hosts', default=None,
      help=flags_core.help_wrap(
          'Comma-separated list of worker ip:port pairs for running '
          'multi-worker models with DistributionStrategy.  The user would '
          'start the program on each host with identical value for this flag.'))
  flags.DEFINE_integer(
      name='task_index', default=-1,
      help=flags_core.help_wrap('If multi-worker training, the task_index of '
                                'this worker.'))
pkanwar23's avatar
pkanwar23 committed
782
783
784
785
786
787
788
789
790
791
792
793
794
  flags.DEFINE_bool(
      name='enable_lars', default=False,
      help=flags_core.help_wrap(
          'Enable LARS optimizer for large batch training.'))
  flags.DEFINE_float(
      name='label_smoothing', default=0.0,
      help=flags_core.help_wrap(
          'Label smoothing parameter used in the softmax_cross_entropy'))
  flags.DEFINE_float(
      name='weight_decay', default=1e-4,
      help=flags_core.help_wrap(
          'Weight decay coefficiant for l2 regularization.'))

795
796
797
  choice_kwargs = dict(
      name='resnet_size', short_name='rs', default='50',
      help=flags_core.help_wrap('The size of the ResNet model to use.'))
798

799
800
801
802
  if resnet_size_choices is None:
    flags.DEFINE_string(**choice_kwargs)
  else:
    flags.DEFINE_enum(enum_values=resnet_size_choices, **choice_kwargs)