resnet_run_loop.py 20.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains utility and supporting functions for ResNet.

  This module contains ResNet code which does not directly build layers. This
includes dataset management, hyperparameter and optimizer code, and argument
parsing. Code for defining the ResNet layers can be found in resnet_model.py.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

28
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
29
import tensorflow as tf  # pylint: disable=g-bad-import-order
30
31

from official.resnet import resnet_model
32
from official.utils.flags import core as flags_core
33
from official.utils.export import export
34
35
from official.utils.logs import hooks_helper
from official.utils.logs import logger
36
from official.utils.misc import model_helpers
37
38


39
40
41
FLAGS = flags.FLAGS


42
43
44
45
################################################################################
# Functions for input processing.
################################################################################
def process_record_dataset(dataset, is_training, batch_size, shuffle_buffer,
46
47
                           parse_record_fn, num_epochs=1, num_parallel_calls=1,
                           examples_per_epoch=0, multi_gpu=False):
Karmel Allison's avatar
Karmel Allison committed
48
  """Given a Dataset with raw records, return an iterator over the records.
49
50
51
52
53
54
55
56
57
58
59

  Args:
    dataset: A Dataset representing raw records
    is_training: A boolean denoting whether the input is for training.
    batch_size: The number of samples per batch.
    shuffle_buffer: The buffer size to use when shuffling records. A larger
      value results in better randomness, but smaller values reduce startup
      time and use less memory.
    parse_record_fn: A function that takes a raw record and returns the
      corresponding (image, label) pair.
    num_epochs: The number of epochs to repeat the dataset.
60
61
62
63
64
65
66
67
68
    num_parallel_calls: The number of records that are processed in parallel.
      This can be optimized per data set but for generally homogeneous data
      sets, should be approximately the number of available CPU cores.
    examples_per_epoch: The number of examples in the current set that
      are processed each epoch. Note that this is only used for multi-GPU mode,
      and only to handle what will eventually be handled inside of Estimator.
    multi_gpu: Whether this is run multi-GPU. Note that this is only required
      currently to handle the batch leftovers (see below), and can be removed
      when that is handled directly by Estimator.
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

  Returns:
    Dataset of (image, label) pairs ready for iteration.
  """
  # We prefetch a batch at a time, This can help smooth out the time taken to
  # load input files as we go through shuffling and processing.
  dataset = dataset.prefetch(buffer_size=batch_size)
  if is_training:
    # Shuffle the records. Note that we shuffle before repeating to ensure
    # that the shuffling respects epoch boundaries.
    dataset = dataset.shuffle(buffer_size=shuffle_buffer)

  # If we are training over multiple epochs before evaluating, repeat the
  # dataset for the appropriate number of epochs.
  dataset = dataset.repeat(num_epochs)

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
  # Currently, if we are using multiple GPUs, we can't pass in uneven batches.
  # (For example, if we have 4 GPUs, the number of examples in each batch
  # must be divisible by 4.) We already ensured this for the batch_size, but
  # we have to additionally ensure that any "leftover" examples-- the remainder
  # examples (total examples % batch_size) that get called a batch for the very
  # last batch of an epoch-- do not raise an error when we try to split them
  # over the GPUs. This will likely be handled by Estimator during replication
  # in the future, but for now, we just drop the leftovers here.
  if multi_gpu:
    total_examples = num_epochs * examples_per_epoch
    dataset = dataset.take(batch_size * (total_examples // batch_size))

  # Parse the raw records into images and labels
  dataset = dataset.map(lambda value: parse_record_fn(value, is_training),
                        num_parallel_calls=num_parallel_calls)

  dataset = dataset.batch(batch_size)
102
103
104
105

  # Operations between the final prefetch and the get_next call to the iterator
  # will happen synchronously during run time. We prefetch here again to
  # background all of the above processing work and keep it out of the
106
107
  # critical training path.
  dataset = dataset.prefetch(1)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

  return dataset


def get_synth_input_fn(height, width, num_channels, num_classes):
  """Returns an input function that returns a dataset with zeroes.

  This is useful in debugging input pipeline performance, as it removes all
  elements of file reading and image preprocessing.

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
129
  def input_fn(is_training, data_dir, batch_size, *args):  # pylint: disable=unused-argument
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    images = tf.zeros((batch_size, height, width, num_channels), tf.float32)
    labels = tf.zeros((batch_size, num_classes), tf.int32)
    return tf.data.Dataset.from_tensors((images, labels)).repeat()

  return input_fn


################################################################################
# Functions for running training/eval/validation loops for the model.
################################################################################
def learning_rate_with_decay(
    batch_size, batch_denom, num_images, boundary_epochs, decay_rates):
  """Get a learning rate that decays step-wise as training progresses.

  Args:
    batch_size: the number of examples processed in each training batch.
    batch_denom: this value will be used to scale the base learning rate.
      `0.1 * batch size` is divided by this number, such that when
      batch_denom == batch_size, the initial learning rate will be 0.1.
    num_images: total number of images that will be used for training.
    boundary_epochs: list of ints representing the epochs at which we
      decay the learning rate.
    decay_rates: list of floats representing the decay rates to be used
153
154
      for scaling the learning rate. It should have one more element
      than `boundary_epochs`, and all elements should have the same type.
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

  Returns:
    Returns a function that takes a single argument - the number of batches
    trained so far (global_step)- and returns the learning rate to be used
    for training the next batch.
  """
  initial_learning_rate = 0.1 * batch_size / batch_denom
  batches_per_epoch = num_images / batch_size

  # Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
  boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs]
  vals = [initial_learning_rate * decay for decay in decay_rates]

  def learning_rate_fn(global_step):
    global_step = tf.cast(global_step, tf.int32)
    return tf.train.piecewise_constant(global_step, boundaries, vals)

  return learning_rate_fn


def resnet_model_fn(features, labels, mode, model_class,
                    resnet_size, weight_decay, learning_rate_fn, momentum,
177
178
                    data_format, version, loss_scale,
                    loss_filter_fn=None, multi_gpu=False,
179
                    dtype=resnet_model.DEFAULT_DTYPE):
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  """Shared functionality for different resnet model_fns.

  Initializes the ResnetModel representing the model layers
  and uses that model to build the necessary EstimatorSpecs for
  the `mode` in question. For training, this means building losses,
  the optimizer, and the train op that get passed into the EstimatorSpec.
  For evaluation and prediction, the EstimatorSpec is returned without
  a train op, but with the necessary parameters for the given mode.

  Args:
    features: tensor representing input images
    labels: tensor representing class labels for all input images
    mode: current estimator mode; should be one of
      `tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`
    model_class: a class representing a TensorFlow model that has a __call__
      function. We assume here that this is a subclass of ResnetModel.
    resnet_size: A single integer for the size of the ResNet model.
    weight_decay: weight decay loss rate used to regularize learned variables.
    learning_rate_fn: function that returns the current learning rate given
      the current global_step
    momentum: momentum term used for optimization
    data_format: Input format ('channels_last', 'channels_first', or None).
      If set to None, the format is dependent on whether a GPU is available.
    version: Integer representing which version of the ResNet network to use.
      See README for details. Valid values: [1, 2]
205
206
    loss_scale: The factor to scale the loss for numerical stability. A detailed
      summary is present in the arg parser help text.
207
208
209
210
    loss_filter_fn: function that takes a string variable name and returns
      True if the var should be included in loss calculation, and False
      otherwise. If None, batch_normalization variables will be excluded
      from the loss.
211
212
    multi_gpu: If True, wrap the optimizer in a TowerOptimizer suitable for
      data-parallel distribution across multiple GPUs.
213
    dtype: the TensorFlow dtype to use for calculations.
214
215
216
217
218
219
220
221
222

  Returns:
    EstimatorSpec parameterized according to the input params and the
    current mode.
  """

  # Generate a summary node for the images
  tf.summary.image('images', features, max_outputs=6)

223
224
225
226
  features = tf.cast(features, dtype)

  model = model_class(resnet_size, data_format, version=version, dtype=dtype)

227
228
  logits = model(features, mode == tf.estimator.ModeKeys.TRAIN)

229
230
231
232
233
  # This acts as a no-op if the logits are already in fp32 (provided logits are
  # not a SparseTensor). If dtype is is low precision, logits must be cast to
  # fp32 for numerical stability.
  logits = tf.cast(logits, tf.float32)

234
235
236
237
238
239
  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
240
241
242
243
244
245
246
    # Return the predictions and the specification for serving a SavedModel
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=predictions,
        export_outputs={
            'predict': tf.estimator.export.PredictOutput(predictions)
        })
247
248
249
250
251
252
253
254
255
256
257

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
  cross_entropy = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels)

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # If no loss_filter_fn is passed, assume we want the default behavior,
  # which is that batch_normalization variables are excluded from loss.
Karmel Allison's avatar
Karmel Allison committed
258
259
260
  def exclude_batch_norm(name):
    return 'batch_normalization' not in name
  loss_filter_fn = loss_filter_fn or exclude_batch_norm
261
262

  # Add weight decay to the loss.
263
  l2_loss = weight_decay * tf.add_n(
264
265
      # loss is computed using fp32 for numerical stability.
      [tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables()
266
       if loss_filter_fn(v.name)])
267
268
  tf.summary.scalar('l2_loss', l2_loss)
  loss = cross_entropy + l2_loss
269
270
271
272
273
274
275
276
277
278
279
280

  if mode == tf.estimator.ModeKeys.TRAIN:
    global_step = tf.train.get_or_create_global_step()

    learning_rate = learning_rate_fn(global_step)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
281
282
283
284
285
        momentum=momentum)

    # If we are running multi-GPU, we need to wrap the optimizer.
    if multi_gpu:
      optimizer = tf.contrib.estimator.TowerOptimizer(optimizer)
286

287
288
289
290
291
292
293
294
295
296
297
298
299
300
    if loss_scale != 1:
      # When computing fp16 gradients, often intermediate tensor values are
      # so small, they underflow to 0. To avoid this, we multiply the loss by
      # loss_scale to make these tensor values loss_scale times bigger.
      scaled_grad_vars = optimizer.compute_gradients(loss * loss_scale)

      # Once the gradient computation is complete we can scale the gradients
      # back to the correct scale before passing them to the optimizer.
      unscaled_grad_vars = [(grad / loss_scale, var)
                            for grad, var in scaled_grad_vars]
      minimize_op = optimizer.apply_gradients(unscaled_grad_vars, global_step)
    else:
      minimize_op = optimizer.minimize(loss, global_step)

301
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
302
    train_op = tf.group(minimize_op, update_ops)
303
304
305
  else:
    train_op = None

306
307
  accuracy = tf.metrics.accuracy(
      tf.argmax(labels, axis=1), predictions['classes'])
308
309
310
311
312
313
314
315
316
317
318
319
320
321
  metrics = {'accuracy': accuracy}

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
  tf.summary.scalar('train_accuracy', accuracy[1])

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


322
def validate_batch_size_for_multi_gpu(batch_size):
Karmel Allison's avatar
Karmel Allison committed
323
  """For multi-gpu, batch-size must be a multiple of the number of GPUs.
324

325
  Note that this should eventually be handled by replicate_model_fn
326
327
  directly. Multi-GPU support is currently experimental, however,
  so doing the work here until that feature is in place.
Karmel Allison's avatar
Karmel Allison committed
328
329

  Args:
330
    batch_size: the number of examples processed in each training batch.
Karmel Allison's avatar
Karmel Allison committed
331
332

  Raises:
333
    ValueError: if no GPUs are found, or selected batch_size is invalid.
334
  """
335
336
337
338
339
340
341
  from tensorflow.python.client import device_lib  # pylint: disable=g-import-not-at-top

  local_device_protos = device_lib.list_local_devices()
  num_gpus = sum([1 for d in local_device_protos if d.device_type == 'GPU'])
  if not num_gpus:
    raise ValueError('Multi-GPU mode was specified, but no GPUs '
                     'were found. To use CPU, run without --multi_gpu.')
342
343
344
345

  remainder = batch_size % num_gpus
  if remainder:
    err = ('When running with multiple GPUs, batch size '
346
347
           'must be a multiple of the number of available GPUs. '
           'Found {} GPUs with a batch size of {}; try --batch_size={} instead.'
Karmel Allison's avatar
Karmel Allison committed
348
          ).format(num_gpus, batch_size, batch_size - remainder)
349
350
351
    raise ValueError(err)


352
def resnet_main(flags_obj, model_function, input_function, shape=None):
353
354
355
  """Shared main loop for ResNet Models.

  Args:
356
357
    flags_obj: An object containing parsed flags. See define_resnet_flags()
      for details.
358
359
360
361
362
363
364
365
    model_function: the function that instantiates the Model and builds the
      ops for train/eval. This will be passed directly into the estimator.
    input_function: the function that processes the dataset and returns a
      dataset that the estimator can train on. This will be wrapped with
      all the relevant flags for running and passed to estimator.
    shape: list of ints representing the shape of the images used for training.
      This is only used if flags.export_dir is passed.
  """
Karmel Allison's avatar
Karmel Allison committed
366

367
368
369
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

370
371
  if flags_obj.multi_gpu:
    validate_batch_size_for_multi_gpu(flags_obj.batch_size)
372
373
374
375
376
377
378
379

    # There are two steps required if using multi-GPU: (1) wrap the model_fn,
    # and (2) wrap the optimizer. The first happens here, and (2) happens
    # in the model_fn itself when the optimizer is defined.
    model_function = tf.contrib.estimator.replicate_model_fn(
        model_function,
        loss_reduction=tf.losses.Reduction.MEAN)

380
381
382
383
384
  # Create session config based on values of inter_op_parallelism_threads and
  # intra_op_parallelism_threads. Note that we default to having
  # allow_soft_placement = True, which is required for multi-GPU and not
  # harmful for other modes.
  session_config = tf.ConfigProto(
385
386
      inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads,
      intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads,
387
388
      allow_soft_placement=True)

389
390
391
  # Set up a RunConfig to save checkpoint and set session config.
  run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9,
                                                session_config=session_config)
392
  classifier = tf.estimator.Estimator(
393
      model_fn=model_function, model_dir=flags_obj.model_dir, config=run_config,
394
      params={
395
396
397
398
399
400
401
          'resnet_size': int(flags_obj.resnet_size),
          'data_format': flags_obj.data_format,
          'batch_size': flags_obj.batch_size,
          'multi_gpu': flags_obj.multi_gpu,
          'version': int(flags_obj.version),
          'loss_scale': flags_core.get_loss_scale(flags_obj),
          'dtype': flags_core.get_tf_dtype(flags_obj)
402
403
      })

404
  benchmark_logger = logger.config_benchmark_logger(flags_obj.benchmark_log_dir)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
405
  benchmark_logger.log_run_info('resnet')
406

407
  train_hooks = hooks_helper.get_train_hooks(
408
409
410
      flags_obj.hooks,
      batch_size=flags_obj.batch_size,
      benchmark_log_dir=flags_obj.benchmark_log_dir)
411

412
  def input_fn_train():
413
414
415
    return input_function(True, flags_obj.data_dir, flags_obj.batch_size,
                          flags_obj.epochs_between_evals,
                          flags_obj.num_parallel_calls, flags_obj.multi_gpu)
416

417
  def input_fn_eval():
418
419
    return input_function(False, flags_obj.data_dir, flags_obj.batch_size,
                          1, flags_obj.num_parallel_calls, flags_obj.multi_gpu)
420

421
422
  total_training_cycle = (flags_obj.train_epochs //
                          flags_obj.epochs_between_evals)
423
424
425
  for cycle_index in range(total_training_cycle):
    tf.logging.info('Starting a training cycle: %d/%d',
                    cycle_index, total_training_cycle)
426

427
    classifier.train(input_fn=input_fn_train, hooks=train_hooks,
428
                     max_steps=flags_obj.max_train_steps)
429

430
    tf.logging.info('Starting to evaluate.')
431
432
433
434
435
436
437
    # flags.max_train_steps is generally associated with testing and profiling.
    # As a result it is frequently called with synthetic data, which will
    # iterate forever. Passing steps=flags.max_train_steps allows the eval
    # (which is generally unimportant in those circumstances) to terminate.
    # Note that eval will run for max_train_steps each loop, regardless of the
    # global_step count.
    eval_results = classifier.evaluate(input_fn=input_fn_eval,
438
                                       steps=flags_obj.max_train_steps)
439

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
440
    benchmark_logger.log_evaluation_result(eval_results)
441

442
    if model_helpers.past_stop_threshold(
443
        flags_obj.stop_threshold, eval_results['accuracy']):
444
445
      break

446
447
  if flags_obj.export_dir is not None:
    warn_on_multi_gpu_export(flags_obj.multi_gpu)
448

449
450
    # Exports a saved model for the given classifier.
    input_receiver_fn = export.build_tensor_serving_input_receiver_fn(
451
452
        shape, batch_size=flags_obj.batch_size)
    classifier.export_savedmodel(flags_obj.export_dir, input_receiver_fn)
453
454


455
456
457
458
459
460
461
462
463
464
def warn_on_multi_gpu_export(multi_gpu=False):
  """For the time being, multi-GPU mode does not play nicely with exporting."""
  if multi_gpu:
    tf.logging.warning(
        'You are exporting a SavedModel while in multi-GPU mode. Note that '
        'the resulting SavedModel will require the same GPUs be available.'
        'If you wish to serve the SavedModel from a different device, '
        'try exporting the SavedModel with multi-GPU mode turned off.')


465
466
467
468
469
470
471
def define_resnet_flags(resnet_size_choices=None):
  """Add flags and validators for ResNet."""
  flags_core.define_base()
  flags_core.define_performance()
  flags_core.define_image()
  flags_core.define_benchmark()
  flags.adopt_module_key_flags(flags_core)
472

473
474
475
476
  flags.DEFINE_enum(
      name='version', short_name='rv', default='2', enum_values=['1', '2'],
      help=flags_core.help_wrap(
          'Version of ResNet. (1 or 2) See README.md for details.'))
477

478

479
480
481
  choice_kwargs = dict(
      name='resnet_size', short_name='rs', default='50',
      help=flags_core.help_wrap('The size of the ResNet model to use.'))
482

483
484
485
486
  if resnet_size_choices is None:
    flags.DEFINE_string(**choice_kwargs)
  else:
    flags.DEFINE_enum(enum_values=resnet_size_choices, **choice_kwargs)