"docs/en/user_guides/useful_tools.md" did not exist on "591641700172673c79b8778d6f7be834db8a52a6"
resnet_run_loop.py 27.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains utility and supporting functions for ResNet.

  This module contains ResNet code which does not directly build layers. This
includes dataset management, hyperparameter and optimizer code, and argument
parsing. Code for defining the ResNet layers can be found in resnet_model.py.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

26
import functools
Taylor Robie's avatar
Taylor Robie committed
27
import math
28
29
import os

30
# pylint: disable=g-bad-import-order
31
from absl import flags
32
import tensorflow as tf
Toby Boyd's avatar
Toby Boyd committed
33
34
from tensorflow.contrib.data.python.ops import threadpool
import multiprocessing
35
36

from official.resnet import resnet_model
37
from official.utils.flags import core as flags_core
38
from official.utils.export import export
39
40
from official.utils.logs import hooks_helper
from official.utils.logs import logger
41
from official.resnet import imagenet_preprocessing
42
from official.utils.misc import distribution_utils
43
from official.utils.misc import model_helpers
44
45
46
47
48


################################################################################
# Functions for input processing.
################################################################################
Toby Boyd's avatar
Toby Boyd committed
49
50
51
52
53
54
55
56
57
def process_record_dataset(dataset,
                           is_training,
                           batch_size,
                           shuffle_buffer,
                           parse_record_fn,
                           num_epochs=1,
                           dtype=tf.float32,
                           datasets_num_private_threads=None,
                           num_parallel_batches=1):
Karmel Allison's avatar
Karmel Allison committed
58
  """Given a Dataset with raw records, return an iterator over the records.
59
60
61
62
63
64
65
66
67
68
69

  Args:
    dataset: A Dataset representing raw records
    is_training: A boolean denoting whether the input is for training.
    batch_size: The number of samples per batch.
    shuffle_buffer: The buffer size to use when shuffling records. A larger
      value results in better randomness, but smaller values reduce startup
      time and use less memory.
    parse_record_fn: A function that takes a raw record and returns the
      corresponding (image, label) pair.
    num_epochs: The number of epochs to repeat the dataset.
70
    dtype: Data type to use for images/features.
Toby Boyd's avatar
Toby Boyd committed
71
72
73
    datasets_num_private_threads: Number of threads for a private
      threadpool created for all datasets computation.
    num_parallel_batches: Number of parallel batches for tf.data.
74
75
76
77

  Returns:
    Dataset of (image, label) pairs ready for iteration.
  """
78

79
80
  # Prefetches a batch at a time to smooth out the time taken to load input
  # files for shuffling and processing.
81
82
  dataset = dataset.prefetch(buffer_size=batch_size)
  if is_training:
83
    # Shuffles records before repeating to respect epoch boundaries.
84
85
    dataset = dataset.shuffle(buffer_size=shuffle_buffer)

86
  # Repeats the dataset for the number of epochs to train.
87
88
  dataset = dataset.repeat(num_epochs)

89
  # Parses the raw records into images and labels.
90
91
  dataset = dataset.apply(
      tf.contrib.data.map_and_batch(
92
          lambda value: parse_record_fn(value, is_training, dtype),
93
          batch_size=batch_size,
Toby Boyd's avatar
Toby Boyd committed
94
          num_parallel_batches=num_parallel_batches,
95
          drop_remainder=False))
96
97
98
99

  # Operations between the final prefetch and the get_next call to the iterator
  # will happen synchronously during run time. We prefetch here again to
  # background all of the above processing work and keep it out of the
100
101
102
  # critical training path. Setting buffer_size to tf.contrib.data.AUTOTUNE
  # allows DistributionStrategies to adjust how many batches to fetch based
  # on how many devices are present.
103
  dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
104

Toby Boyd's avatar
Toby Boyd committed
105
106
  # Defines a specific size thread pool for tf.data operations.
  if datasets_num_private_threads:
Toby Boyd's avatar
Toby Boyd committed
107
108
    tf.logging.info('datasets_num_private_threads: %s',
                    datasets_num_private_threads)
Toby Boyd's avatar
Toby Boyd committed
109
110
111
112
113
114
    dataset = threadpool.override_threadpool(
        dataset,
        threadpool.PrivateThreadPool(
            datasets_num_private_threads,
            display_name='input_pipeline_thread_pool'))

115
116
117
  return dataset


Toby Boyd's avatar
Toby Boyd committed
118
119
120
def get_synth_input_fn(height, width, num_channels, num_classes,
                       dtype=tf.float32):
  """Returns an input function that returns a dataset with random data.
121

Toby Boyd's avatar
Toby Boyd committed
122
123
124
125
  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
  tunning the full input pipeline.
126
127
128
129
130
131
132

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
Toby Boyd's avatar
Toby Boyd committed
133
    dtype: Data type for features/images.
134
135
136
137
138

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
Toby Boyd's avatar
Toby Boyd committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
    # Synthetic input should be within [0, 255].
    inputs = tf.truncated_normal(
        [batch_size] + [height, width, num_channels],
        dtype=dtype,
        mean=127,
        stddev=60,
        name='synthetic_inputs')

    labels = tf.random_uniform(
        [batch_size],
        minval=0,
        maxval=num_classes - 1,
        dtype=tf.int32,
        name='synthetic_labels')
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
    data = data.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
    return data
159
160
161
162

  return input_fn


163
def image_bytes_serving_input_fn(image_shape, dtype=tf.float32):
164
165
166
167
168
  """Serving input fn for raw jpeg images."""

  def _preprocess_image(image_bytes):
    """Preprocess a single raw image."""
    # Bounding box around the whole image.
169
    bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=dtype, shape=[1, 1, 4])
170
171
172
173
174
175
176
177
    height, width, num_channels = image_shape
    image = imagenet_preprocessing.preprocess_image(
        image_bytes, bbox, height, width, num_channels, is_training=False)
    return image

  image_bytes_list = tf.placeholder(
      shape=[None], dtype=tf.string, name='input_tensor')
  images = tf.map_fn(
178
      _preprocess_image, image_bytes_list, back_prop=False, dtype=dtype)
179
180
181
182
  return tf.estimator.export.TensorServingInputReceiver(
      images, {'image_bytes': image_bytes_list})


Toby Boyd's avatar
Toby Boyd committed
183
def override_flags_and_set_envars_for_gpu_thread_pool(flags_obj):
Toby Boyd's avatar
Toby Boyd committed
184
  """Override flags and set env_vars for performance.
Toby Boyd's avatar
Toby Boyd committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198

  These settings exist to test the difference between using stock settings
  and manual tuning. It also shows some of the ENV_VARS that can be tweaked to
  squeeze a few extra examples per second.  These settings are defaulted to the
  current platform of interest, which changes over time.

  On systems with small numbers of cpu cores, e.g. under 8 logical cores,
  setting up a private thread pool for GPU with `tf_gpu_thread_mode=gpu_private`
  may perform poorly.

  Args:
    flags_obj: Current flags, which will be adjusted possibly overriding
    what has been set by the user on the command-line.
  """
Toby Boyd's avatar
Toby Boyd committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
  cpu_count = multiprocessing.cpu_count()
  tf.logging.info('Logical CPU cores: %s', cpu_count)

  # Sets up thread pool for each GPU for op scheduling.
  per_gpu_thread_count = 1
  total_gpu_thread_count = per_gpu_thread_count * flags_obj.num_gpus
  os.environ['TF_GPU_THREAD_MODE'] = flags_obj.tf_gpu_thread_mode
  os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count)
  tf.logging.info('TF_GPU_THREAD_COUNT: %s', os.environ['TF_GPU_THREAD_COUNT'])
  tf.logging.info('TF_GPU_THREAD_MODE: %s', os.environ['TF_GPU_THREAD_MODE'])

  # Reduces general thread pool by number of threads used for GPU pool.
  main_thread_count = cpu_count - total_gpu_thread_count
  flags_obj.inter_op_parallelism_threads = main_thread_count

  # Sets thread count for tf.data. Logical cores minus threads assign to the
  # private GPU pool along with 2 thread per GPU for event monitoring and
  # sending / receiving tensors.
  num_monitoring_threads = 2 * flags_obj.num_gpus
  num_private_threads = (cpu_count - total_gpu_thread_count
                         - num_monitoring_threads)
  flags_obj.datasets_num_private_threads = num_private_threads
Toby Boyd's avatar
Toby Boyd committed
221
222


223
224
225
226
################################################################################
# Functions for running training/eval/validation loops for the model.
################################################################################
def learning_rate_with_decay(
227
228
    batch_size, batch_denom, num_images, boundary_epochs, decay_rates,
    base_lr=0.1, warmup=False):
229
230
231
232
233
234
235
236
237
238
239
  """Get a learning rate that decays step-wise as training progresses.

  Args:
    batch_size: the number of examples processed in each training batch.
    batch_denom: this value will be used to scale the base learning rate.
      `0.1 * batch size` is divided by this number, such that when
      batch_denom == batch_size, the initial learning rate will be 0.1.
    num_images: total number of images that will be used for training.
    boundary_epochs: list of ints representing the epochs at which we
      decay the learning rate.
    decay_rates: list of floats representing the decay rates to be used
240
241
      for scaling the learning rate. It should have one more element
      than `boundary_epochs`, and all elements should have the same type.
242
243
    base_lr: Initial learning rate scaled based on batch_denom.
    warmup: Run a 5 epoch warmup to the initial lr.
244
245
246
247
248
  Returns:
    Returns a function that takes a single argument - the number of batches
    trained so far (global_step)- and returns the learning rate to be used
    for training the next batch.
  """
249
  initial_learning_rate = base_lr * batch_size / batch_denom
250
251
  batches_per_epoch = num_images / batch_size

Taylor Robie's avatar
Taylor Robie committed
252
253
254
  # Reduce the learning rate at certain epochs.
  # CIFAR-10: divide by 10 at epoch 100, 150, and 200
  # ImageNet: divide by 10 at epoch 30, 60, 80, and 90
255
256
257
258
  boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs]
  vals = [initial_learning_rate * decay for decay in decay_rates]

  def learning_rate_fn(global_step):
259
260
261
262
263
264
265
266
267
    """Builds scaled learning rate function with 5 epoch warm up."""
    lr = tf.train.piecewise_constant(global_step, boundaries, vals)
    if warmup:
      warmup_steps = int(batches_per_epoch * 5)
      warmup_lr = (
          initial_learning_rate * tf.cast(global_step, tf.float32) / tf.cast(
              warmup_steps, tf.float32))
      return tf.cond(global_step < warmup_steps, lambda: warmup_lr, lambda: lr)
    return lr
268
269
270
271
272
273

  return learning_rate_fn


def resnet_model_fn(features, labels, mode, model_class,
                    resnet_size, weight_decay, learning_rate_fn, momentum,
274
                    data_format, resnet_version, loss_scale,
Zac Wellmer's avatar
Zac Wellmer committed
275
276
                    loss_filter_fn=None, dtype=resnet_model.DEFAULT_DTYPE,
                    fine_tune=False):
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
  """Shared functionality for different resnet model_fns.

  Initializes the ResnetModel representing the model layers
  and uses that model to build the necessary EstimatorSpecs for
  the `mode` in question. For training, this means building losses,
  the optimizer, and the train op that get passed into the EstimatorSpec.
  For evaluation and prediction, the EstimatorSpec is returned without
  a train op, but with the necessary parameters for the given mode.

  Args:
    features: tensor representing input images
    labels: tensor representing class labels for all input images
    mode: current estimator mode; should be one of
      `tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`
    model_class: a class representing a TensorFlow model that has a __call__
      function. We assume here that this is a subclass of ResnetModel.
    resnet_size: A single integer for the size of the ResNet model.
    weight_decay: weight decay loss rate used to regularize learned variables.
    learning_rate_fn: function that returns the current learning rate given
      the current global_step
    momentum: momentum term used for optimization
    data_format: Input format ('channels_last', 'channels_first', or None).
      If set to None, the format is dependent on whether a GPU is available.
300
301
    resnet_version: Integer representing which version of the ResNet network to
      use. See README for details. Valid values: [1, 2]
302
303
    loss_scale: The factor to scale the loss for numerical stability. A detailed
      summary is present in the arg parser help text.
304
305
306
307
    loss_filter_fn: function that takes a string variable name and returns
      True if the var should be included in loss calculation, and False
      otherwise. If None, batch_normalization variables will be excluded
      from the loss.
308
    dtype: the TensorFlow dtype to use for calculations.
Zac Wellmer's avatar
Zac Wellmer committed
309
    fine_tune: If True only train the dense layers(final layers).
310
311
312
313
314
315
316
317

  Returns:
    EstimatorSpec parameterized according to the input params and the
    current mode.
  """

  # Generate a summary node for the images
  tf.summary.image('images', features, max_outputs=6)
318
319
  # Checks that features/images have same data type being used for calculations.
  assert features.dtype == dtype
320

321
322
  model = model_class(resnet_size, data_format, resnet_version=resnet_version,
                      dtype=dtype)
323

324
325
  logits = model(features, mode == tf.estimator.ModeKeys.TRAIN)

326
327
328
329
330
  # This acts as a no-op if the logits are already in fp32 (provided logits are
  # not a SparseTensor). If dtype is is low precision, logits must be cast to
  # fp32 for numerical stability.
  logits = tf.cast(logits, tf.float32)

331
332
333
334
335
336
  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
337
338
339
340
341
342
343
    # Return the predictions and the specification for serving a SavedModel
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=predictions,
        export_outputs={
            'predict': tf.estimator.export.PredictOutput(predictions)
        })
344
345

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
346
347
  cross_entropy = tf.losses.sparse_softmax_cross_entropy(
      logits=logits, labels=labels)
348
349
350
351
352
353
354

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # If no loss_filter_fn is passed, assume we want the default behavior,
  # which is that batch_normalization variables are excluded from loss.
Karmel Allison's avatar
Karmel Allison committed
355
356
357
  def exclude_batch_norm(name):
    return 'batch_normalization' not in name
  loss_filter_fn = loss_filter_fn or exclude_batch_norm
358
359

  # Add weight decay to the loss.
360
  l2_loss = weight_decay * tf.add_n(
361
362
      # loss is computed using fp32 for numerical stability.
      [tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables()
363
       if loss_filter_fn(v.name)])
364
365
  tf.summary.scalar('l2_loss', l2_loss)
  loss = cross_entropy + l2_loss
366
367
368
369
370
371
372
373
374
375
376
377

  if mode == tf.estimator.ModeKeys.TRAIN:
    global_step = tf.train.get_or_create_global_step()

    learning_rate = learning_rate_fn(global_step)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
378
379
        momentum=momentum
    )
380

Zac Wellmer's avatar
Zac Wellmer committed
381
    def _dense_grad_filter(gvs):
382
383
384
385
      """Only apply gradient updates to the final layer.

      This function is used for fine tuning.

Zac Wellmer's avatar
Zac Wellmer committed
386
      Args:
387
        gvs: list of tuples with gradients and variable info
Zac Wellmer's avatar
Zac Wellmer committed
388
      Returns:
389
390
        filtered gradients so that only the dense layer remains
      """
Zac Wellmer's avatar
Zac Wellmer committed
391
392
      return [(g, v) for g, v in gvs if 'dense' in v.name]

393
394
395
396
397
398
    if loss_scale != 1:
      # When computing fp16 gradients, often intermediate tensor values are
      # so small, they underflow to 0. To avoid this, we multiply the loss by
      # loss_scale to make these tensor values loss_scale times bigger.
      scaled_grad_vars = optimizer.compute_gradients(loss * loss_scale)

Zac Wellmer's avatar
Zac Wellmer committed
399
400
401
      if fine_tune:
        scaled_grad_vars = _dense_grad_filter(scaled_grad_vars)

402
403
404
405
406
407
      # Once the gradient computation is complete we can scale the gradients
      # back to the correct scale before passing them to the optimizer.
      unscaled_grad_vars = [(grad / loss_scale, var)
                            for grad, var in scaled_grad_vars]
      minimize_op = optimizer.apply_gradients(unscaled_grad_vars, global_step)
    else:
Zac Wellmer's avatar
Zac Wellmer committed
408
409
410
411
      grad_vars = optimizer.compute_gradients(loss)
      if fine_tune:
        grad_vars = _dense_grad_filter(grad_vars)
      minimize_op = optimizer.apply_gradients(grad_vars, global_step)
412

413
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
414
    train_op = tf.group(minimize_op, update_ops)
415
416
417
  else:
    train_op = None

418
  accuracy = tf.metrics.accuracy(labels, predictions['classes'])
419
420
421
422
423
424
  accuracy_top_5 = tf.metrics.mean(tf.nn.in_top_k(predictions=logits,
                                                  targets=labels,
                                                  k=5,
                                                  name='top_5_op'))
  metrics = {'accuracy': accuracy,
             'accuracy_top_5': accuracy_top_5}
425
426
427

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
428
  tf.identity(accuracy_top_5[1], name='train_accuracy_top_5')
429
  tf.summary.scalar('train_accuracy', accuracy[1])
430
  tf.summary.scalar('train_accuracy_top_5', accuracy_top_5[1])
431
432
433
434
435

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
436
437
      train_op=train_op,
      eval_metric_ops=metrics)
438
439


440
441
def resnet_main(
    flags_obj, model_function, input_function, dataset_name, shape=None):
442
443
444
  """Shared main loop for ResNet Models.

  Args:
445
446
    flags_obj: An object containing parsed flags. See define_resnet_flags()
      for details.
447
448
449
450
451
    model_function: the function that instantiates the Model and builds the
      ops for train/eval. This will be passed directly into the estimator.
    input_function: the function that processes the dataset and returns a
      dataset that the estimator can train on. This will be wrapped with
      all the relevant flags for running and passed to estimator.
452
453
    dataset_name: the name of the dataset for training and evaluation. This is
      used for logging purpose.
454
    shape: list of ints representing the shape of the images used for training.
455
      This is only used if flags_obj.export_dir is passed.
456
  """
Karmel Allison's avatar
Karmel Allison committed
457

458
459
  model_helpers.apply_clean(flags.FLAGS)

Toby Boyd's avatar
Toby Boyd committed
460
  # Ensures flag override logic is only executed if explicitly triggered.
Toby Boyd's avatar
Toby Boyd committed
461
  if flags_obj.tf_gpu_thread_mode:
Toby Boyd's avatar
Toby Boyd committed
462
    override_flags_and_set_envars_for_gpu_thread_pool(flags_obj)
Toby Boyd's avatar
Toby Boyd committed
463
464
465
466
467
468
469
470
471

  # Create session config based on values of inter_op_parallelism_threads and
  # intra_op_parallelism_threads. Note that we default to having
  # allow_soft_placement = True, which is required for multi-GPU and not
  # harmful for other modes.
  session_config = tf.ConfigProto(
      inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads,
      intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads,
      allow_soft_placement=True)
472

473
474
  distribution_strategy = distribution_utils.get_distribution_strategy(
      flags_core.get_num_gpus(flags_obj), flags_obj.all_reduce_alg)
475

Toby Boyd's avatar
Toby Boyd committed
476
477
478
  # Creates a `RunConfig` that checkpoints every 24 hours which essentially
  # results in checkpoints at the end of each training loop as determined by
  # `epochs_between_evals`.  Doing it more often is a needless small cost.
479
  run_config = tf.estimator.RunConfig(
Toby Boyd's avatar
Toby Boyd committed
480
481
482
      train_distribute=distribution_strategy,
      session_config=session_config,
      save_checkpoints_secs=60*60*24)
483

Zac Wellmer's avatar
Zac Wellmer committed
484
485
486
487
488
489
490
491
  # initialize our model with all but the dense layer from pretrained resnet
  if flags_obj.pretrained_model_checkpoint_path is not None:
    warm_start_settings = tf.estimator.WarmStartSettings(
        flags_obj.pretrained_model_checkpoint_path,
        vars_to_warm_start='^(?!.*dense)')
  else:
    warm_start_settings = None

492
  classifier = tf.estimator.Estimator(
493
      model_fn=model_function, model_dir=flags_obj.model_dir, config=run_config,
Zac Wellmer's avatar
Zac Wellmer committed
494
      warm_start_from=warm_start_settings, params={
495
496
497
          'resnet_size': int(flags_obj.resnet_size),
          'data_format': flags_obj.data_format,
          'batch_size': flags_obj.batch_size,
498
          'resnet_version': int(flags_obj.resnet_version),
499
          'loss_scale': flags_core.get_loss_scale(flags_obj),
Zac Wellmer's avatar
Zac Wellmer committed
500
501
          'dtype': flags_core.get_tf_dtype(flags_obj),
          'fine_tune': flags_obj.fine_tune
502
503
      })

504
505
506
507
  run_params = {
      'batch_size': flags_obj.batch_size,
      'dtype': flags_core.get_tf_dtype(flags_obj),
      'resnet_size': flags_obj.resnet_size,
508
      'resnet_version': flags_obj.resnet_version,
509
510
511
      'synthetic_data': flags_obj.use_synthetic_data,
      'train_epochs': flags_obj.train_epochs,
  }
512
  if flags_obj.use_synthetic_data:
513
    dataset_name = dataset_name + '-synthetic'
514

515
  benchmark_logger = logger.get_benchmark_logger()
516
517
  benchmark_logger.log_run_info('resnet', dataset_name, run_params,
                                test_id=flags_obj.benchmark_test_id)
518

519
  train_hooks = hooks_helper.get_train_hooks(
520
      flags_obj.hooks,
521
      model_dir=flags_obj.model_dir,
522
      batch_size=flags_obj.batch_size)
523

Taylor Robie's avatar
Taylor Robie committed
524
  def input_fn_train(num_epochs):
525
    return input_function(
Toby Boyd's avatar
Toby Boyd committed
526
527
        is_training=True,
        data_dir=flags_obj.data_dir,
528
        batch_size=distribution_utils.per_device_batch_size(
529
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
Taylor Robie's avatar
Taylor Robie committed
530
        num_epochs=num_epochs,
Toby Boyd's avatar
Toby Boyd committed
531
532
        dtype=flags_core.get_tf_dtype(flags_obj),
        datasets_num_private_threads=flags_obj.datasets_num_private_threads,
Toby Boyd's avatar
Toby Boyd committed
533
        num_parallel_batches=flags_obj.datasets_num_parallel_batches)
534

535
  def input_fn_eval():
536
    return input_function(
Toby Boyd's avatar
Toby Boyd committed
537
538
        is_training=False,
        data_dir=flags_obj.data_dir,
539
        batch_size=distribution_utils.per_device_batch_size(
540
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
541
542
        num_epochs=1,
        dtype=flags_core.get_tf_dtype(flags_obj))
Taylor Robie's avatar
Taylor Robie committed
543

Taylor Robie's avatar
Taylor Robie committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
  if flags_obj.eval_only or not flags_obj.train_epochs:
    # If --eval_only is set, perform a single loop with zero train epochs.
    schedule, n_loops = [0], 1
  else:
    # Compute the number of times to loop while training. All but the last
    # pass will train for `epochs_between_evals` epochs, while the last will
    # train for the number needed to reach `training_epochs`. For instance if
    #   train_epochs = 25 and epochs_between_evals = 10
    # schedule will be set to [10, 10, 5]. That is to say, the loop will:
    #   Train for 10 epochs and then evaluate.
    #   Train for another 10 epochs and then evaluate.
    #   Train for a final 5 epochs (to reach 25 epochs) and then evaluate.
    n_loops = math.ceil(flags_obj.train_epochs / flags_obj.epochs_between_evals)
    schedule = [flags_obj.epochs_between_evals for _ in range(int(n_loops))]
    schedule[-1] = flags_obj.train_epochs - sum(schedule[:-1])  # over counting.

  for cycle_index, num_train_epochs in enumerate(schedule):
    tf.logging.info('Starting cycle: %d/%d', cycle_index, int(n_loops))

    if num_train_epochs:
      classifier.train(input_fn=lambda: input_fn_train(num_train_epochs),
                       hooks=train_hooks, max_steps=flags_obj.max_train_steps)
566

567
    tf.logging.info('Starting to evaluate.')
568
569
570
571
572

    # flags_obj.max_train_steps is generally associated with testing and
    # profiling. As a result it is frequently called with synthetic data, which
    # will iterate forever. Passing steps=flags_obj.max_train_steps allows the
    # eval (which is generally unimportant in those circumstances) to terminate.
573
574
575
    # Note that eval will run for max_train_steps each loop, regardless of the
    # global_step count.
    eval_results = classifier.evaluate(input_fn=input_fn_eval,
576
                                       steps=flags_obj.max_train_steps)
577

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
578
    benchmark_logger.log_evaluation_result(eval_results)
579

580
    if model_helpers.past_stop_threshold(
581
        flags_obj.stop_threshold, eval_results['accuracy']):
582
583
      break

584
  if flags_obj.export_dir is not None:
585
    # Exports a saved model for the given classifier.
586
    export_dtype = flags_core.get_tf_dtype(flags_obj)
587
    if flags_obj.image_bytes_as_serving_input:
588
589
      input_receiver_fn = functools.partial(
          image_bytes_serving_input_fn, shape, dtype=export_dtype)
590
591
    else:
      input_receiver_fn = export.build_tensor_serving_input_receiver_fn(
592
593
594
          shape, batch_size=flags_obj.batch_size, dtype=export_dtype)
    classifier.export_savedmodel(flags_obj.export_dir, input_receiver_fn,
                                 strip_default_attrs=True)
595
596


597
598
599
def define_resnet_flags(resnet_size_choices=None):
  """Add flags and validators for ResNet."""
  flags_core.define_base()
Toby Boyd's avatar
Toby Boyd committed
600
601
602
603
  flags_core.define_performance(num_parallel_calls=False,
                                tf_gpu_thread_mode=True,
                                datasets_num_private_threads=True,
                                datasets_num_parallel_batches=True)
604
605
606
  flags_core.define_image()
  flags_core.define_benchmark()
  flags.adopt_module_key_flags(flags_core)
607

608
  flags.DEFINE_enum(
Toby Boyd's avatar
Toby Boyd committed
609
      name='resnet_version', short_name='rv', default='1',
610
      enum_values=['1', '2'],
611
612
      help=flags_core.help_wrap(
          'Version of ResNet. (1 or 2) See README.md for details.'))
Zac Wellmer's avatar
Zac Wellmer committed
613
614
615
616
617
618
619
620
621
  flags.DEFINE_bool(
      name='fine_tune', short_name='ft', default=False,
      help=flags_core.help_wrap(
          'If True do not train any parameters except for the final layer.'))
  flags.DEFINE_string(
      name='pretrained_model_checkpoint_path', short_name='pmcp', default=None,
      help=flags_core.help_wrap(
          'If not None initialize all the network except the final layer with '
          'these values'))
Taylor Robie's avatar
Taylor Robie committed
622
  flags.DEFINE_boolean(
623
      name='eval_only', default=False,
Taylor Robie's avatar
Taylor Robie committed
624
625
      help=flags_core.help_wrap('Skip training and only perform evaluation on '
                                'the latest checkpoint.'))
626
  flags.DEFINE_boolean(
Toby Boyd's avatar
Toby Boyd committed
627
      name='image_bytes_as_serving_input', default=False,
628
629
630
631
632
633
634
      help=flags_core.help_wrap(
          'If True exports savedmodel with serving signature that accepts '
          'JPEG image bytes instead of a fixed size [HxWxC] tensor that '
          'represents the image. The former is easier to use for serving at '
          'the expense of image resize/cropping being done as part of model '
          'inference. Note, this flag only applies to ImageNet and cannot '
          'be used for CIFAR.'))
635

636
637
638
  choice_kwargs = dict(
      name='resnet_size', short_name='rs', default='50',
      help=flags_core.help_wrap('The size of the ResNet model to use.'))
639

640
641
642
643
  if resnet_size_choices is None:
    flags.DEFINE_string(**choice_kwargs)
  else:
    flags.DEFINE_enum(enum_values=resnet_size_choices, **choice_kwargs)