resnet_run_loop.py 18.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains utility and supporting functions for ResNet.

  This module contains ResNet code which does not directly build layers. This
includes dataset management, hyperparameter and optimizer code, and argument
parsing. Code for defining the ResNet layers can be found in resnet_model.py.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

28
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
29
import tensorflow as tf  # pylint: disable=g-bad-import-order
30
31

from official.resnet import resnet_model
32
from official.utils.flags import core as flags_core
33
from official.utils.export import export
34
35
from official.utils.logs import hooks_helper
from official.utils.logs import logger
36
from official.utils.misc import model_helpers
37
38
39
40
41
42


################################################################################
# Functions for input processing.
################################################################################
def process_record_dataset(dataset, is_training, batch_size, shuffle_buffer,
43
                           parse_record_fn, num_epochs=1):
Karmel Allison's avatar
Karmel Allison committed
44
  """Given a Dataset with raw records, return an iterator over the records.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

  Args:
    dataset: A Dataset representing raw records
    is_training: A boolean denoting whether the input is for training.
    batch_size: The number of samples per batch.
    shuffle_buffer: The buffer size to use when shuffling records. A larger
      value results in better randomness, but smaller values reduce startup
      time and use less memory.
    parse_record_fn: A function that takes a raw record and returns the
      corresponding (image, label) pair.
    num_epochs: The number of epochs to repeat the dataset.

  Returns:
    Dataset of (image, label) pairs ready for iteration.
  """
60

61
62
63
64
65
66
67
68
69
70
71
72
  # We prefetch a batch at a time, This can help smooth out the time taken to
  # load input files as we go through shuffling and processing.
  dataset = dataset.prefetch(buffer_size=batch_size)
  if is_training:
    # Shuffle the records. Note that we shuffle before repeating to ensure
    # that the shuffling respects epoch boundaries.
    dataset = dataset.shuffle(buffer_size=shuffle_buffer)

  # If we are training over multiple epochs before evaluating, repeat the
  # dataset for the appropriate number of epochs.
  dataset = dataset.repeat(num_epochs)

73
74
75
76
77
78
79
80
  # Parse the raw records into images and labels. Testing has shown that setting
  # num_parallel_batches > 1 produces no improvement in throughput, since
  # batch_size is almost always much greater than the number of CPU cores.
  dataset = dataset.apply(
      tf.contrib.data.map_and_batch(
          lambda value: parse_record_fn(value, is_training),
          batch_size=batch_size,
          num_parallel_batches=1))
81
82
83
84

  # Operations between the final prefetch and the get_next call to the iterator
  # will happen synchronously during run time. We prefetch here again to
  # background all of the above processing work and keep it out of the
85
86
87
88
  # critical training path. Setting buffer_size to tf.contrib.data.AUTOTUNE
  # allows DistributionStrategies to adjust how many batches to fetch based
  # on how many devices are present.
  dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

  return dataset


def get_synth_input_fn(height, width, num_channels, num_classes):
  """Returns an input function that returns a dataset with zeroes.

  This is useful in debugging input pipeline performance, as it removes all
  elements of file reading and image preprocessing.

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
110
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):  # pylint: disable=unused-argument
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    images = tf.zeros((batch_size, height, width, num_channels), tf.float32)
    labels = tf.zeros((batch_size, num_classes), tf.int32)
    return tf.data.Dataset.from_tensors((images, labels)).repeat()

  return input_fn


################################################################################
# Functions for running training/eval/validation loops for the model.
################################################################################
def learning_rate_with_decay(
    batch_size, batch_denom, num_images, boundary_epochs, decay_rates):
  """Get a learning rate that decays step-wise as training progresses.

  Args:
    batch_size: the number of examples processed in each training batch.
    batch_denom: this value will be used to scale the base learning rate.
      `0.1 * batch size` is divided by this number, such that when
      batch_denom == batch_size, the initial learning rate will be 0.1.
    num_images: total number of images that will be used for training.
    boundary_epochs: list of ints representing the epochs at which we
      decay the learning rate.
    decay_rates: list of floats representing the decay rates to be used
134
135
      for scaling the learning rate. It should have one more element
      than `boundary_epochs`, and all elements should have the same type.
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

  Returns:
    Returns a function that takes a single argument - the number of batches
    trained so far (global_step)- and returns the learning rate to be used
    for training the next batch.
  """
  initial_learning_rate = 0.1 * batch_size / batch_denom
  batches_per_epoch = num_images / batch_size

  # Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
  boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs]
  vals = [initial_learning_rate * decay for decay in decay_rates]

  def learning_rate_fn(global_step):
    global_step = tf.cast(global_step, tf.int32)
    return tf.train.piecewise_constant(global_step, boundaries, vals)

  return learning_rate_fn


def resnet_model_fn(features, labels, mode, model_class,
                    resnet_size, weight_decay, learning_rate_fn, momentum,
158
                    data_format, version, loss_scale, loss_filter_fn=None,
159
                    dtype=resnet_model.DEFAULT_DTYPE):
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
  """Shared functionality for different resnet model_fns.

  Initializes the ResnetModel representing the model layers
  and uses that model to build the necessary EstimatorSpecs for
  the `mode` in question. For training, this means building losses,
  the optimizer, and the train op that get passed into the EstimatorSpec.
  For evaluation and prediction, the EstimatorSpec is returned without
  a train op, but with the necessary parameters for the given mode.

  Args:
    features: tensor representing input images
    labels: tensor representing class labels for all input images
    mode: current estimator mode; should be one of
      `tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`
    model_class: a class representing a TensorFlow model that has a __call__
      function. We assume here that this is a subclass of ResnetModel.
    resnet_size: A single integer for the size of the ResNet model.
    weight_decay: weight decay loss rate used to regularize learned variables.
    learning_rate_fn: function that returns the current learning rate given
      the current global_step
    momentum: momentum term used for optimization
    data_format: Input format ('channels_last', 'channels_first', or None).
      If set to None, the format is dependent on whether a GPU is available.
    version: Integer representing which version of the ResNet network to use.
      See README for details. Valid values: [1, 2]
185
186
    loss_scale: The factor to scale the loss for numerical stability. A detailed
      summary is present in the arg parser help text.
187
188
189
190
    loss_filter_fn: function that takes a string variable name and returns
      True if the var should be included in loss calculation, and False
      otherwise. If None, batch_normalization variables will be excluded
      from the loss.
191
    dtype: the TensorFlow dtype to use for calculations.
192
193
194
195
196
197
198
199
200

  Returns:
    EstimatorSpec parameterized according to the input params and the
    current mode.
  """

  # Generate a summary node for the images
  tf.summary.image('images', features, max_outputs=6)

201
202
203
204
  features = tf.cast(features, dtype)

  model = model_class(resnet_size, data_format, version=version, dtype=dtype)

205
206
  logits = model(features, mode == tf.estimator.ModeKeys.TRAIN)

207
208
209
210
211
  # This acts as a no-op if the logits are already in fp32 (provided logits are
  # not a SparseTensor). If dtype is is low precision, logits must be cast to
  # fp32 for numerical stability.
  logits = tf.cast(logits, tf.float32)

212
213
214
215
216
217
  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
218
219
220
221
222
223
224
    # Return the predictions and the specification for serving a SavedModel
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=predictions,
        export_outputs={
            'predict': tf.estimator.export.PredictOutput(predictions)
        })
225
226
227
228
229
230
231
232
233
234
235

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
  cross_entropy = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels)

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # If no loss_filter_fn is passed, assume we want the default behavior,
  # which is that batch_normalization variables are excluded from loss.
Karmel Allison's avatar
Karmel Allison committed
236
237
238
  def exclude_batch_norm(name):
    return 'batch_normalization' not in name
  loss_filter_fn = loss_filter_fn or exclude_batch_norm
239
240

  # Add weight decay to the loss.
241
  l2_loss = weight_decay * tf.add_n(
242
243
      # loss is computed using fp32 for numerical stability.
      [tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables()
244
       if loss_filter_fn(v.name)])
245
246
  tf.summary.scalar('l2_loss', l2_loss)
  loss = cross_entropy + l2_loss
247
248
249
250
251
252
253
254
255
256
257
258

  if mode == tf.estimator.ModeKeys.TRAIN:
    global_step = tf.train.get_or_create_global_step()

    learning_rate = learning_rate_fn(global_step)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
259
260
        momentum=momentum
    )
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
    if loss_scale != 1:
      # When computing fp16 gradients, often intermediate tensor values are
      # so small, they underflow to 0. To avoid this, we multiply the loss by
      # loss_scale to make these tensor values loss_scale times bigger.
      scaled_grad_vars = optimizer.compute_gradients(loss * loss_scale)

      # Once the gradient computation is complete we can scale the gradients
      # back to the correct scale before passing them to the optimizer.
      unscaled_grad_vars = [(grad / loss_scale, var)
                            for grad, var in scaled_grad_vars]
      minimize_op = optimizer.apply_gradients(unscaled_grad_vars, global_step)
    else:
      minimize_op = optimizer.minimize(loss, global_step)

276
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
277
    train_op = tf.group(minimize_op, update_ops)
278
279
280
  else:
    train_op = None

281
282
283
284
285
286
287
288
  if not tf.contrib.distribute.has_distribution_strategy():
    accuracy = tf.metrics.accuracy(
        tf.argmax(labels, axis=1), predictions['classes'])
  else:
    # Metrics are currently not compatible with distribution strategies during
    # training. This does not affect the overall performance of the model.
    accuracy = (tf.no_op(), tf.constant(0))

289
290
291
292
293
294
295
296
297
298
299
300
301
302
  metrics = {'accuracy': accuracy}

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
  tf.summary.scalar('train_accuracy', accuracy[1])

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


303
def per_device_batch_size(batch_size, num_gpus):
Karmel Allison's avatar
Karmel Allison committed
304
  """For multi-gpu, batch-size must be a multiple of the number of GPUs.
305

306
  Note that this should eventually be handled by DistributionStrategies
307
308
  directly. Multi-GPU support is currently experimental, however,
  so doing the work here until that feature is in place.
Karmel Allison's avatar
Karmel Allison committed
309
310

  Args:
311
312
313
314
315
316
    batch_size: Global batch size to be divided among devices. This should be
      equal to num_gpus times the single-GPU batch_size for multi-gpu training.
    num_gpus: How many GPUs are used with DistributionStrategies.

  Returns:
    Batch size per device.
Karmel Allison's avatar
Karmel Allison committed
317
318

  Raises:
319
    ValueError: if batch_size is not divisible by number of devices
320
  """
321
322
  if num_gpus <= 1:
    return batch_size
323
324
325
326

  remainder = batch_size % num_gpus
  if remainder:
    err = ('When running with multiple GPUs, batch size '
327
328
           'must be a multiple of the number of available GPUs. Found {} '
           'GPUs with a batch size of {}; try --batch_size={} instead.'
Karmel Allison's avatar
Karmel Allison committed
329
          ).format(num_gpus, batch_size, batch_size - remainder)
330
    raise ValueError(err)
331
  return int(batch_size / num_gpus)
332
333


334
def resnet_main(flags_obj, model_function, input_function, shape=None):
335
336
337
  """Shared main loop for ResNet Models.

  Args:
338
339
    flags_obj: An object containing parsed flags. See define_resnet_flags()
      for details.
340
341
342
343
344
345
    model_function: the function that instantiates the Model and builds the
      ops for train/eval. This will be passed directly into the estimator.
    input_function: the function that processes the dataset and returns a
      dataset that the estimator can train on. This will be wrapped with
      all the relevant flags for running and passed to estimator.
    shape: list of ints representing the shape of the images used for training.
346
      This is only used if flags_obj.export_dir is passed.
347
  """
Karmel Allison's avatar
Karmel Allison committed
348

349
350
351
352
353
354
355
356
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

  # Create session config based on values of inter_op_parallelism_threads and
  # intra_op_parallelism_threads. Note that we default to having
  # allow_soft_placement = True, which is required for multi-GPU and not
  # harmful for other modes.
  session_config = tf.ConfigProto(
357
358
      inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads,
      intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads,
359
360
      allow_soft_placement=True)

361
362
363
364
365
366
367
368
369
370
371
372
  if flags_core.get_num_gpus(flags_obj) == 0:
    distribution = tf.contrib.distribute.OneDeviceStrategy('device:CPU:0')
  elif flags_core.get_num_gpus(flags_obj) == 1:
    distribution = tf.contrib.distribute.OneDeviceStrategy('device:GPU:0')
  else:
    distribution = tf.contrib.distribute.MirroredStrategy(
        num_gpus=flags_core.get_num_gpus(flags_obj)
    )

  run_config = tf.estimator.RunConfig(train_distribute=distribution,
                                      session_config=session_config)

373
  classifier = tf.estimator.Estimator(
374
      model_fn=model_function, model_dir=flags_obj.model_dir, config=run_config,
375
      params={
376
377
378
379
380
381
          'resnet_size': int(flags_obj.resnet_size),
          'data_format': flags_obj.data_format,
          'batch_size': flags_obj.batch_size,
          'version': int(flags_obj.version),
          'loss_scale': flags_core.get_loss_scale(flags_obj),
          'dtype': flags_core.get_tf_dtype(flags_obj)
382
383
      })

384
  benchmark_logger = logger.config_benchmark_logger(flags_obj.benchmark_log_dir)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
385
  benchmark_logger.log_run_info('resnet')
386

387
  train_hooks = hooks_helper.get_train_hooks(
388
389
390
      flags_obj.hooks,
      batch_size=flags_obj.batch_size,
      benchmark_log_dir=flags_obj.benchmark_log_dir)
391

392
  def input_fn_train():
393
394
395
396
397
    return input_function(
        is_training=True, data_dir=flags_obj.data_dir,
        batch_size=per_device_batch_size(
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
        num_epochs=flags_obj.epochs_between_evals)
398

399
  def input_fn_eval():
400
401
402
403
404
    return input_function(
        is_training=False, data_dir=flags_obj.data_dir,
        batch_size=per_device_batch_size(
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
        num_epochs=1)
405

406
407
  total_training_cycle = (flags_obj.train_epochs //
                          flags_obj.epochs_between_evals)
408
409
410
  for cycle_index in range(total_training_cycle):
    tf.logging.info('Starting a training cycle: %d/%d',
                    cycle_index, total_training_cycle)
411

412
    classifier.train(input_fn=input_fn_train, hooks=train_hooks,
413
                     max_steps=flags_obj.max_train_steps)
414

415
    tf.logging.info('Starting to evaluate.')
416
417
418
419
420

    # flags_obj.max_train_steps is generally associated with testing and
    # profiling. As a result it is frequently called with synthetic data, which
    # will iterate forever. Passing steps=flags_obj.max_train_steps allows the
    # eval (which is generally unimportant in those circumstances) to terminate.
421
422
423
    # Note that eval will run for max_train_steps each loop, regardless of the
    # global_step count.
    eval_results = classifier.evaluate(input_fn=input_fn_eval,
424
                                       steps=flags_obj.max_train_steps)
425

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
426
    benchmark_logger.log_evaluation_result(eval_results)
427

428
    if model_helpers.past_stop_threshold(
429
        flags_obj.stop_threshold, eval_results['accuracy']):
430
431
      break

432
  if flags_obj.export_dir is not None:
433
434
    # Exports a saved model for the given classifier.
    input_receiver_fn = export.build_tensor_serving_input_receiver_fn(
435
436
        shape, batch_size=flags_obj.batch_size)
    classifier.export_savedmodel(flags_obj.export_dir, input_receiver_fn)
437
438


439
440
441
def define_resnet_flags(resnet_size_choices=None):
  """Add flags and validators for ResNet."""
  flags_core.define_base()
442
  flags_core.define_performance(num_parallel_calls=False)
443
444
445
  flags_core.define_image()
  flags_core.define_benchmark()
  flags.adopt_module_key_flags(flags_core)
446

447
448
449
450
  flags.DEFINE_enum(
      name='version', short_name='rv', default='2', enum_values=['1', '2'],
      help=flags_core.help_wrap(
          'Version of ResNet. (1 or 2) See README.md for details.'))
451

452

453
454
455
  choice_kwargs = dict(
      name='resnet_size', short_name='rs', default='50',
      help=flags_core.help_wrap('The size of the ResNet model to use.'))
456

457
458
459
460
  if resnet_size_choices is None:
    flags.DEFINE_string(**choice_kwargs)
  else:
    flags.DEFINE_enum(enum_values=resnet_size_choices, **choice_kwargs)