resnet_run_loop.py 20.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains utility and supporting functions for ResNet.

  This module contains ResNet code which does not directly build layers. This
includes dataset management, hyperparameter and optimizer code, and argument
parsing. Code for defining the ResNet layers can be found in resnet_model.py.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

28
# pylint: disable=g-bad-import-order
29
from absl import flags
30
import tensorflow as tf
31
32

from official.resnet import resnet_model
33
from official.utils.flags import core as flags_core
34
from official.utils.export import export
35
36
from official.utils.logs import hooks_helper
from official.utils.logs import logger
37
from official.utils.misc import model_helpers
38
# pylint: enable=g-bad-import-order
39
40
41
42
43
44


################################################################################
# Functions for input processing.
################################################################################
def process_record_dataset(dataset, is_training, batch_size, shuffle_buffer,
Taylor Robie's avatar
Taylor Robie committed
45
46
                           parse_record_fn, num_epochs=1, num_gpus=None,
                           examples_per_epoch=None):
Karmel Allison's avatar
Karmel Allison committed
47
  """Given a Dataset with raw records, return an iterator over the records.
48
49
50
51
52
53
54
55
56
57
58

  Args:
    dataset: A Dataset representing raw records
    is_training: A boolean denoting whether the input is for training.
    batch_size: The number of samples per batch.
    shuffle_buffer: The buffer size to use when shuffling records. A larger
      value results in better randomness, but smaller values reduce startup
      time and use less memory.
    parse_record_fn: A function that takes a raw record and returns the
      corresponding (image, label) pair.
    num_epochs: The number of epochs to repeat the dataset.
Taylor Robie's avatar
Taylor Robie committed
59
60
    num_gpus: The number of gpus used for training.
    examples_per_epoch: The number of examples in an epoch.
61
62
63
64

  Returns:
    Dataset of (image, label) pairs ready for iteration.
  """
65

66
67
68
69
70
71
72
73
74
75
76
77
  # We prefetch a batch at a time, This can help smooth out the time taken to
  # load input files as we go through shuffling and processing.
  dataset = dataset.prefetch(buffer_size=batch_size)
  if is_training:
    # Shuffle the records. Note that we shuffle before repeating to ensure
    # that the shuffling respects epoch boundaries.
    dataset = dataset.shuffle(buffer_size=shuffle_buffer)

  # If we are training over multiple epochs before evaluating, repeat the
  # dataset for the appropriate number of epochs.
  dataset = dataset.repeat(num_epochs)

Taylor Robie's avatar
Taylor Robie committed
78
79
80
81
82
83
84
85
86
87
  if is_training and num_gpus and examples_per_epoch:
    total_examples = num_epochs * examples_per_epoch
    # Force the number of batches to be divisible by the number of devices.
    # This prevents some devices from receiving batches while others do not,
    # which can lead to a lockup. This case will soon be handled directly by
    # distribution strategies, at which point this .take() operation will no
    # longer be needed.
    total_batches = total_examples // batch_size // num_gpus * num_gpus
    dataset.take(total_batches * batch_size)

88
89
90
91
92
93
94
  # Parse the raw records into images and labels. Testing has shown that setting
  # num_parallel_batches > 1 produces no improvement in throughput, since
  # batch_size is almost always much greater than the number of CPU cores.
  dataset = dataset.apply(
      tf.contrib.data.map_and_batch(
          lambda value: parse_record_fn(value, is_training),
          batch_size=batch_size,
95
          num_parallel_batches=1,
96
          drop_remainder=False))
97
98
99
100

  # Operations between the final prefetch and the get_next call to the iterator
  # will happen synchronously during run time. We prefetch here again to
  # background all of the above processing work and keep it out of the
101
102
103
  # critical training path. Setting buffer_size to tf.contrib.data.AUTOTUNE
  # allows DistributionStrategies to adjust how many batches to fetch based
  # on how many devices are present.
104
  dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

  return dataset


def get_synth_input_fn(height, width, num_channels, num_classes):
  """Returns an input function that returns a dataset with zeroes.

  This is useful in debugging input pipeline performance, as it removes all
  elements of file reading and image preprocessing.

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
126
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):  # pylint: disable=unused-argument
127
    images = tf.zeros((batch_size, height, width, num_channels), tf.float32)
128
    labels = tf.zeros((batch_size), tf.int32)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    return tf.data.Dataset.from_tensors((images, labels)).repeat()

  return input_fn


################################################################################
# Functions for running training/eval/validation loops for the model.
################################################################################
def learning_rate_with_decay(
    batch_size, batch_denom, num_images, boundary_epochs, decay_rates):
  """Get a learning rate that decays step-wise as training progresses.

  Args:
    batch_size: the number of examples processed in each training batch.
    batch_denom: this value will be used to scale the base learning rate.
      `0.1 * batch size` is divided by this number, such that when
      batch_denom == batch_size, the initial learning rate will be 0.1.
    num_images: total number of images that will be used for training.
    boundary_epochs: list of ints representing the epochs at which we
      decay the learning rate.
    decay_rates: list of floats representing the decay rates to be used
150
151
      for scaling the learning rate. It should have one more element
      than `boundary_epochs`, and all elements should have the same type.
152
153
154
155
156
157
158
159
160

  Returns:
    Returns a function that takes a single argument - the number of batches
    trained so far (global_step)- and returns the learning rate to be used
    for training the next batch.
  """
  initial_learning_rate = 0.1 * batch_size / batch_denom
  batches_per_epoch = num_images / batch_size

Taylor Robie's avatar
Taylor Robie committed
161
162
163
  # Reduce the learning rate at certain epochs.
  # CIFAR-10: divide by 10 at epoch 100, 150, and 200
  # ImageNet: divide by 10 at epoch 30, 60, 80, and 90
164
165
166
167
168
169
170
171
172
173
174
175
  boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs]
  vals = [initial_learning_rate * decay for decay in decay_rates]

  def learning_rate_fn(global_step):
    global_step = tf.cast(global_step, tf.int32)
    return tf.train.piecewise_constant(global_step, boundaries, vals)

  return learning_rate_fn


def resnet_model_fn(features, labels, mode, model_class,
                    resnet_size, weight_decay, learning_rate_fn, momentum,
176
177
                    data_format, resnet_version, loss_scale,
                    loss_filter_fn=None, dtype=resnet_model.DEFAULT_DTYPE):
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  """Shared functionality for different resnet model_fns.

  Initializes the ResnetModel representing the model layers
  and uses that model to build the necessary EstimatorSpecs for
  the `mode` in question. For training, this means building losses,
  the optimizer, and the train op that get passed into the EstimatorSpec.
  For evaluation and prediction, the EstimatorSpec is returned without
  a train op, but with the necessary parameters for the given mode.

  Args:
    features: tensor representing input images
    labels: tensor representing class labels for all input images
    mode: current estimator mode; should be one of
      `tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`
    model_class: a class representing a TensorFlow model that has a __call__
      function. We assume here that this is a subclass of ResnetModel.
    resnet_size: A single integer for the size of the ResNet model.
    weight_decay: weight decay loss rate used to regularize learned variables.
    learning_rate_fn: function that returns the current learning rate given
      the current global_step
    momentum: momentum term used for optimization
    data_format: Input format ('channels_last', 'channels_first', or None).
      If set to None, the format is dependent on whether a GPU is available.
201
202
    resnet_version: Integer representing which version of the ResNet network to
      use. See README for details. Valid values: [1, 2]
203
204
    loss_scale: The factor to scale the loss for numerical stability. A detailed
      summary is present in the arg parser help text.
205
206
207
208
    loss_filter_fn: function that takes a string variable name and returns
      True if the var should be included in loss calculation, and False
      otherwise. If None, batch_normalization variables will be excluded
      from the loss.
209
    dtype: the TensorFlow dtype to use for calculations.
210
211
212
213
214
215
216
217
218

  Returns:
    EstimatorSpec parameterized according to the input params and the
    current mode.
  """

  # Generate a summary node for the images
  tf.summary.image('images', features, max_outputs=6)

219
220
  features = tf.cast(features, dtype)

221
222
  model = model_class(resnet_size, data_format, resnet_version=resnet_version,
                      dtype=dtype)
223

224
225
  logits = model(features, mode == tf.estimator.ModeKeys.TRAIN)

226
227
228
229
230
  # This acts as a no-op if the logits are already in fp32 (provided logits are
  # not a SparseTensor). If dtype is is low precision, logits must be cast to
  # fp32 for numerical stability.
  logits = tf.cast(logits, tf.float32)

231
232
233
234
235
236
  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
237
238
239
240
241
242
243
    # Return the predictions and the specification for serving a SavedModel
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=predictions,
        export_outputs={
            'predict': tf.estimator.export.PredictOutput(predictions)
        })
244
245

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
246
247
  cross_entropy = tf.losses.sparse_softmax_cross_entropy(
      logits=logits, labels=labels)
248
249
250
251
252
253
254

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # If no loss_filter_fn is passed, assume we want the default behavior,
  # which is that batch_normalization variables are excluded from loss.
Karmel Allison's avatar
Karmel Allison committed
255
256
257
  def exclude_batch_norm(name):
    return 'batch_normalization' not in name
  loss_filter_fn = loss_filter_fn or exclude_batch_norm
258
259

  # Add weight decay to the loss.
260
  l2_loss = weight_decay * tf.add_n(
261
262
      # loss is computed using fp32 for numerical stability.
      [tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables()
263
       if loss_filter_fn(v.name)])
264
265
  tf.summary.scalar('l2_loss', l2_loss)
  loss = cross_entropy + l2_loss
266
267
268
269
270
271
272
273
274
275
276
277

  if mode == tf.estimator.ModeKeys.TRAIN:
    global_step = tf.train.get_or_create_global_step()

    learning_rate = learning_rate_fn(global_step)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
278
279
        momentum=momentum
    )
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
    if loss_scale != 1:
      # When computing fp16 gradients, often intermediate tensor values are
      # so small, they underflow to 0. To avoid this, we multiply the loss by
      # loss_scale to make these tensor values loss_scale times bigger.
      scaled_grad_vars = optimizer.compute_gradients(loss * loss_scale)

      # Once the gradient computation is complete we can scale the gradients
      # back to the correct scale before passing them to the optimizer.
      unscaled_grad_vars = [(grad / loss_scale, var)
                            for grad, var in scaled_grad_vars]
      minimize_op = optimizer.apply_gradients(unscaled_grad_vars, global_step)
    else:
      minimize_op = optimizer.minimize(loss, global_step)

295
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
296
    train_op = tf.group(minimize_op, update_ops)
297
298
299
  else:
    train_op = None

300
  if not tf.contrib.distribute.has_distribution_strategy():
301
    accuracy = tf.metrics.accuracy(labels, predictions['classes'])
302
303
304
305
306
  else:
    # Metrics are currently not compatible with distribution strategies during
    # training. This does not affect the overall performance of the model.
    accuracy = (tf.no_op(), tf.constant(0))

307
308
309
310
311
312
313
314
315
316
317
318
319
320
  metrics = {'accuracy': accuracy}

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
  tf.summary.scalar('train_accuracy', accuracy[1])

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


321
def per_device_batch_size(batch_size, num_gpus):
Karmel Allison's avatar
Karmel Allison committed
322
  """For multi-gpu, batch-size must be a multiple of the number of GPUs.
323

324
  Note that this should eventually be handled by DistributionStrategies
325
326
  directly. Multi-GPU support is currently experimental, however,
  so doing the work here until that feature is in place.
Karmel Allison's avatar
Karmel Allison committed
327
328

  Args:
329
330
331
332
333
334
    batch_size: Global batch size to be divided among devices. This should be
      equal to num_gpus times the single-GPU batch_size for multi-gpu training.
    num_gpus: How many GPUs are used with DistributionStrategies.

  Returns:
    Batch size per device.
Karmel Allison's avatar
Karmel Allison committed
335
336

  Raises:
337
    ValueError: if batch_size is not divisible by number of devices
338
  """
339
340
  if num_gpus <= 1:
    return batch_size
341
342
343
344

  remainder = batch_size % num_gpus
  if remainder:
    err = ('When running with multiple GPUs, batch size '
345
346
           'must be a multiple of the number of available GPUs. Found {} '
           'GPUs with a batch size of {}; try --batch_size={} instead.'
Karmel Allison's avatar
Karmel Allison committed
347
          ).format(num_gpus, batch_size, batch_size - remainder)
348
    raise ValueError(err)
349
  return int(batch_size / num_gpus)
350
351


352
353
def resnet_main(
    flags_obj, model_function, input_function, dataset_name, shape=None):
354
355
356
  """Shared main loop for ResNet Models.

  Args:
357
358
    flags_obj: An object containing parsed flags. See define_resnet_flags()
      for details.
359
360
361
362
363
    model_function: the function that instantiates the Model and builds the
      ops for train/eval. This will be passed directly into the estimator.
    input_function: the function that processes the dataset and returns a
      dataset that the estimator can train on. This will be wrapped with
      all the relevant flags for running and passed to estimator.
364
365
    dataset_name: the name of the dataset for training and evaluation. This is
      used for logging purpose.
366
    shape: list of ints representing the shape of the images used for training.
367
      This is only used if flags_obj.export_dir is passed.
368
  """
Karmel Allison's avatar
Karmel Allison committed
369

370
371
372
373
374
375
376
377
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

  # Create session config based on values of inter_op_parallelism_threads and
  # intra_op_parallelism_threads. Note that we default to having
  # allow_soft_placement = True, which is required for multi-GPU and not
  # harmful for other modes.
  session_config = tf.ConfigProto(
378
379
      inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads,
      intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads,
380
381
      allow_soft_placement=True)

382
383
384
385
386
387
388
389
390
391
392
393
  if flags_core.get_num_gpus(flags_obj) == 0:
    distribution = tf.contrib.distribute.OneDeviceStrategy('device:CPU:0')
  elif flags_core.get_num_gpus(flags_obj) == 1:
    distribution = tf.contrib.distribute.OneDeviceStrategy('device:GPU:0')
  else:
    distribution = tf.contrib.distribute.MirroredStrategy(
        num_gpus=flags_core.get_num_gpus(flags_obj)
    )

  run_config = tf.estimator.RunConfig(train_distribute=distribution,
                                      session_config=session_config)

394
  classifier = tf.estimator.Estimator(
395
      model_fn=model_function, model_dir=flags_obj.model_dir, config=run_config,
396
      params={
397
398
399
          'resnet_size': int(flags_obj.resnet_size),
          'data_format': flags_obj.data_format,
          'batch_size': flags_obj.batch_size,
400
          'resnet_version': int(flags_obj.resnet_version),
401
402
          'loss_scale': flags_core.get_loss_scale(flags_obj),
          'dtype': flags_core.get_tf_dtype(flags_obj)
403
404
      })

405
406
407
408
  run_params = {
      'batch_size': flags_obj.batch_size,
      'dtype': flags_core.get_tf_dtype(flags_obj),
      'resnet_size': flags_obj.resnet_size,
409
      'resnet_version': flags_obj.resnet_version,
410
411
412
      'synthetic_data': flags_obj.use_synthetic_data,
      'train_epochs': flags_obj.train_epochs,
  }
413
414
  if flags_obj.use_synthetic_data:
    dataset_name = dataset_name + "-synthetic"
415

416
  benchmark_logger = logger.get_benchmark_logger()
417
418
  benchmark_logger.log_run_info('resnet', dataset_name, run_params,
                                test_id=flags_obj.benchmark_test_id)
419

420
  train_hooks = hooks_helper.get_train_hooks(
421
      flags_obj.hooks,
422
      batch_size=flags_obj.batch_size)
423

424
  def input_fn_train():
425
426
427
428
    return input_function(
        is_training=True, data_dir=flags_obj.data_dir,
        batch_size=per_device_batch_size(
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
Taylor Robie's avatar
Taylor Robie committed
429
430
        num_epochs=flags_obj.epochs_between_evals,
        num_gpus=flags_core.get_num_gpus(flags_obj))
431

432
  def input_fn_eval():
433
434
435
436
437
    return input_function(
        is_training=False, data_dir=flags_obj.data_dir,
        batch_size=per_device_batch_size(
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
        num_epochs=1)
Taylor Robie's avatar
Taylor Robie committed
438

439
440
  total_training_cycle = (flags_obj.train_epochs //
                          flags_obj.epochs_between_evals)
441
442
443
  for cycle_index in range(total_training_cycle):
    tf.logging.info('Starting a training cycle: %d/%d',
                    cycle_index, total_training_cycle)
444

445
    classifier.train(input_fn=input_fn_train, hooks=train_hooks,
446
                     max_steps=flags_obj.max_train_steps)
447

448
    tf.logging.info('Starting to evaluate.')
449
450
451
452
453

    # flags_obj.max_train_steps is generally associated with testing and
    # profiling. As a result it is frequently called with synthetic data, which
    # will iterate forever. Passing steps=flags_obj.max_train_steps allows the
    # eval (which is generally unimportant in those circumstances) to terminate.
454
455
456
    # Note that eval will run for max_train_steps each loop, regardless of the
    # global_step count.
    eval_results = classifier.evaluate(input_fn=input_fn_eval,
457
                                       steps=flags_obj.max_train_steps)
458

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
459
    benchmark_logger.log_evaluation_result(eval_results)
460

461
    if model_helpers.past_stop_threshold(
462
        flags_obj.stop_threshold, eval_results['accuracy']):
463
464
      break

465
  if flags_obj.export_dir is not None:
466
467
    # Exports a saved model for the given classifier.
    input_receiver_fn = export.build_tensor_serving_input_receiver_fn(
468
469
        shape, batch_size=flags_obj.batch_size)
    classifier.export_savedmodel(flags_obj.export_dir, input_receiver_fn)
470
471


472
473
474
def define_resnet_flags(resnet_size_choices=None):
  """Add flags and validators for ResNet."""
  flags_core.define_base()
475
  flags_core.define_performance(num_parallel_calls=False)
476
477
478
  flags_core.define_image()
  flags_core.define_benchmark()
  flags.adopt_module_key_flags(flags_core)
479

480
  flags.DEFINE_enum(
481
482
      name='resnet_version', short_name='rv', default='2',
      enum_values=['1', '2'],
483
484
      help=flags_core.help_wrap(
          'Version of ResNet. (1 or 2) See README.md for details.'))
485

486
487
488
  choice_kwargs = dict(
      name='resnet_size', short_name='rs', default='50',
      help=flags_core.help_wrap('The size of the ResNet model to use.'))
489

490
491
492
493
  if resnet_size_choices is None:
    flags.DEFINE_string(**choice_kwargs)
  else:
    flags.DEFINE_enum(enum_values=resnet_size_choices, **choice_kwargs)
494
495
496
497
498
499
500
501
502

  # The current implementation of ResNet v1 is numerically unstable when run
  # with fp16 and will produce NaN errors soon after training begins.
  msg = ('ResNet version 1 is not currently supported with fp16. '
         'Please use version 2 instead.')
  @flags.multi_flags_validator(['dtype', 'resnet_version'], message=msg)
  def _forbid_v1_fp16(flag_values):  # pylint: disable=unused-variable
    return (flags_core.DTYPE_MAP[flag_values['dtype']][0] != tf.float16 or
            flag_values['resnet_version'] != '1')