resnet_run_loop.py 27.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains utility and supporting functions for ResNet.

  This module contains ResNet code which does not directly build layers. This
includes dataset management, hyperparameter and optimizer code, and argument
parsing. Code for defining the ResNet layers can be found in resnet_model.py.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

26
import functools
Taylor Robie's avatar
Taylor Robie committed
27
import math
Toby Boyd's avatar
Toby Boyd committed
28
import multiprocessing
29
30
import os

31
# pylint: disable=g-bad-import-order
32
from absl import flags
33
import tensorflow as tf
34
35

from official.resnet import resnet_model
36
from official.utils.flags import core as flags_core
37
from official.utils.export import export
38
39
from official.utils.logs import hooks_helper
from official.utils.logs import logger
40
from official.resnet import imagenet_preprocessing
41
from official.utils.misc import distribution_utils
42
from official.utils.misc import model_helpers
43
44
45
46
47


################################################################################
# Functions for input processing.
################################################################################
Toby Boyd's avatar
Toby Boyd committed
48
49
50
51
52
53
54
55
56
def process_record_dataset(dataset,
                           is_training,
                           batch_size,
                           shuffle_buffer,
                           parse_record_fn,
                           num_epochs=1,
                           dtype=tf.float32,
                           datasets_num_private_threads=None,
                           num_parallel_batches=1):
Karmel Allison's avatar
Karmel Allison committed
57
  """Given a Dataset with raw records, return an iterator over the records.
58
59
60
61
62
63
64
65
66
67
68

  Args:
    dataset: A Dataset representing raw records
    is_training: A boolean denoting whether the input is for training.
    batch_size: The number of samples per batch.
    shuffle_buffer: The buffer size to use when shuffling records. A larger
      value results in better randomness, but smaller values reduce startup
      time and use less memory.
    parse_record_fn: A function that takes a raw record and returns the
      corresponding (image, label) pair.
    num_epochs: The number of epochs to repeat the dataset.
69
    dtype: Data type to use for images/features.
Toby Boyd's avatar
Toby Boyd committed
70
71
72
    datasets_num_private_threads: Number of threads for a private
      threadpool created for all datasets computation.
    num_parallel_batches: Number of parallel batches for tf.data.
73
74
75
76

  Returns:
    Dataset of (image, label) pairs ready for iteration.
  """
77
78
79
80
81
82
83
84
  # Defines a specific size thread pool for tf.data operations.
  if datasets_num_private_threads:
    options = tf.data.Options()
    options.experimental_threading.private_threadpool_size = (
        datasets_num_private_threads)
    dataset = dataset.with_options(options)
    tf.compat.v1.logging.info('datasets_num_private_threads: %s',
                              datasets_num_private_threads)
85

86
87
  # Prefetches a batch at a time to smooth out the time taken to load input
  # files for shuffling and processing.
88
89
  dataset = dataset.prefetch(buffer_size=batch_size)
  if is_training:
90
    # Shuffles records before repeating to respect epoch boundaries.
91
92
    dataset = dataset.shuffle(buffer_size=shuffle_buffer)

93
  # Repeats the dataset for the number of epochs to train.
94
95
  dataset = dataset.repeat(num_epochs)

96
  # Parses the raw records into images and labels.
97
  dataset = dataset.apply(
98
      tf.data.experimental.map_and_batch(
99
          lambda value: parse_record_fn(value, is_training, dtype),
100
          batch_size=batch_size,
Toby Boyd's avatar
Toby Boyd committed
101
          num_parallel_batches=num_parallel_batches,
102
          drop_remainder=False))
103
104
105
106

  # Operations between the final prefetch and the get_next call to the iterator
  # will happen synchronously during run time. We prefetch here again to
  # background all of the above processing work and keep it out of the
107
108
109
  # critical training path. Setting buffer_size to tf.contrib.data.AUTOTUNE
  # allows DistributionStrategies to adjust how many batches to fetch based
  # on how many devices are present.
110
  dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
111
112
113
114

  return dataset


Toby Boyd's avatar
Toby Boyd committed
115
116
117
def get_synth_input_fn(height, width, num_channels, num_classes,
                       dtype=tf.float32):
  """Returns an input function that returns a dataset with random data.
118

Toby Boyd's avatar
Toby Boyd committed
119
120
121
122
  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
  tunning the full input pipeline.
123
124
125
126
127
128
129

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
Toby Boyd's avatar
Toby Boyd committed
130
    dtype: Data type for features/images.
131
132
133
134
135

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
Toby Boyd's avatar
Toby Boyd committed
136
137
138
139
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
    # Synthetic input should be within [0, 255].
140
    inputs = tf.random.truncated_normal(
Toby Boyd's avatar
Toby Boyd committed
141
142
143
144
145
146
        [batch_size] + [height, width, num_channels],
        dtype=dtype,
        mean=127,
        stddev=60,
        name='synthetic_inputs')

147
    labels = tf.random.uniform(
Toby Boyd's avatar
Toby Boyd committed
148
149
150
151
152
153
        [batch_size],
        minval=0,
        maxval=num_classes - 1,
        dtype=tf.int32,
        name='synthetic_labels')
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
154
    data = data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
Toby Boyd's avatar
Toby Boyd committed
155
    return data
156
157
158
159

  return input_fn


160
def image_bytes_serving_input_fn(image_shape, dtype=tf.float32):
161
162
163
164
165
  """Serving input fn for raw jpeg images."""

  def _preprocess_image(image_bytes):
    """Preprocess a single raw image."""
    # Bounding box around the whole image.
166
    bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=dtype, shape=[1, 1, 4])
167
168
169
170
171
    height, width, num_channels = image_shape
    image = imagenet_preprocessing.preprocess_image(
        image_bytes, bbox, height, width, num_channels, is_training=False)
    return image

172
  image_bytes_list = tf.compat.v1.placeholder(
173
174
      shape=[None], dtype=tf.string, name='input_tensor')
  images = tf.map_fn(
175
      _preprocess_image, image_bytes_list, back_prop=False, dtype=dtype)
176
177
178
179
  return tf.estimator.export.TensorServingInputReceiver(
      images, {'image_bytes': image_bytes_list})


Toby Boyd's avatar
Toby Boyd committed
180
def override_flags_and_set_envars_for_gpu_thread_pool(flags_obj):
Toby Boyd's avatar
Toby Boyd committed
181
  """Override flags and set env_vars for performance.
Toby Boyd's avatar
Toby Boyd committed
182
183
184
185
186
187
188

  These settings exist to test the difference between using stock settings
  and manual tuning. It also shows some of the ENV_VARS that can be tweaked to
  squeeze a few extra examples per second.  These settings are defaulted to the
  current platform of interest, which changes over time.

  On systems with small numbers of cpu cores, e.g. under 8 logical cores,
Toby Boyd's avatar
Toby Boyd committed
189
190
  setting up a gpu thread pool with `tf_gpu_thread_mode=gpu_private` may perform
  poorly.
Toby Boyd's avatar
Toby Boyd committed
191
192
193
194
195

  Args:
    flags_obj: Current flags, which will be adjusted possibly overriding
    what has been set by the user on the command-line.
  """
Toby Boyd's avatar
Toby Boyd committed
196
  cpu_count = multiprocessing.cpu_count()
197
  tf.compat.v1.logging.info('Logical CPU cores: %s', cpu_count)
Toby Boyd's avatar
Toby Boyd committed
198
199
200
201
202
203

  # Sets up thread pool for each GPU for op scheduling.
  per_gpu_thread_count = 1
  total_gpu_thread_count = per_gpu_thread_count * flags_obj.num_gpus
  os.environ['TF_GPU_THREAD_MODE'] = flags_obj.tf_gpu_thread_mode
  os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count)
204
205
206
207
  tf.compat.v1.logging.info('TF_GPU_THREAD_COUNT: %s',
                            os.environ['TF_GPU_THREAD_COUNT'])
  tf.compat.v1.logging.info('TF_GPU_THREAD_MODE: %s',
                            os.environ['TF_GPU_THREAD_MODE'])
Toby Boyd's avatar
Toby Boyd committed
208
209
210
211
212
213
214
215
216

  # Reduces general thread pool by number of threads used for GPU pool.
  main_thread_count = cpu_count - total_gpu_thread_count
  flags_obj.inter_op_parallelism_threads = main_thread_count

  # Sets thread count for tf.data. Logical cores minus threads assign to the
  # private GPU pool along with 2 thread per GPU for event monitoring and
  # sending / receiving tensors.
  num_monitoring_threads = 2 * flags_obj.num_gpus
Toby Boyd's avatar
Toby Boyd committed
217
218
  flags_obj.datasets_num_private_threads = (cpu_count - total_gpu_thread_count
                                            - num_monitoring_threads)
Toby Boyd's avatar
Toby Boyd committed
219
220


221
222
223
224
################################################################################
# Functions for running training/eval/validation loops for the model.
################################################################################
def learning_rate_with_decay(
225
226
    batch_size, batch_denom, num_images, boundary_epochs, decay_rates,
    base_lr=0.1, warmup=False):
227
228
229
230
231
232
233
234
235
236
237
  """Get a learning rate that decays step-wise as training progresses.

  Args:
    batch_size: the number of examples processed in each training batch.
    batch_denom: this value will be used to scale the base learning rate.
      `0.1 * batch size` is divided by this number, such that when
      batch_denom == batch_size, the initial learning rate will be 0.1.
    num_images: total number of images that will be used for training.
    boundary_epochs: list of ints representing the epochs at which we
      decay the learning rate.
    decay_rates: list of floats representing the decay rates to be used
238
239
      for scaling the learning rate. It should have one more element
      than `boundary_epochs`, and all elements should have the same type.
240
241
    base_lr: Initial learning rate scaled based on batch_denom.
    warmup: Run a 5 epoch warmup to the initial lr.
242
243
244
245
246
  Returns:
    Returns a function that takes a single argument - the number of batches
    trained so far (global_step)- and returns the learning rate to be used
    for training the next batch.
  """
247
  initial_learning_rate = base_lr * batch_size / batch_denom
248
249
  batches_per_epoch = num_images / batch_size

Taylor Robie's avatar
Taylor Robie committed
250
251
252
  # Reduce the learning rate at certain epochs.
  # CIFAR-10: divide by 10 at epoch 100, 150, and 200
  # ImageNet: divide by 10 at epoch 30, 60, 80, and 90
253
254
255
256
  boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs]
  vals = [initial_learning_rate * decay for decay in decay_rates]

  def learning_rate_fn(global_step):
257
    """Builds scaled learning rate function with 5 epoch warm up."""
258
    lr = tf.compat.v1.train.piecewise_constant(global_step, boundaries, vals)
259
260
261
262
263
    if warmup:
      warmup_steps = int(batches_per_epoch * 5)
      warmup_lr = (
          initial_learning_rate * tf.cast(global_step, tf.float32) / tf.cast(
              warmup_steps, tf.float32))
264
265
266
      return tf.cond(pred=global_step < warmup_steps,
                     true_fn=lambda: warmup_lr,
                     false_fn=lambda: lr)
267
    return lr
268
269
270
271
272
273

  return learning_rate_fn


def resnet_model_fn(features, labels, mode, model_class,
                    resnet_size, weight_decay, learning_rate_fn, momentum,
274
                    data_format, resnet_version, loss_scale,
Zac Wellmer's avatar
Zac Wellmer committed
275
276
                    loss_filter_fn=None, dtype=resnet_model.DEFAULT_DTYPE,
                    fine_tune=False):
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
  """Shared functionality for different resnet model_fns.

  Initializes the ResnetModel representing the model layers
  and uses that model to build the necessary EstimatorSpecs for
  the `mode` in question. For training, this means building losses,
  the optimizer, and the train op that get passed into the EstimatorSpec.
  For evaluation and prediction, the EstimatorSpec is returned without
  a train op, but with the necessary parameters for the given mode.

  Args:
    features: tensor representing input images
    labels: tensor representing class labels for all input images
    mode: current estimator mode; should be one of
      `tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`
    model_class: a class representing a TensorFlow model that has a __call__
      function. We assume here that this is a subclass of ResnetModel.
    resnet_size: A single integer for the size of the ResNet model.
    weight_decay: weight decay loss rate used to regularize learned variables.
    learning_rate_fn: function that returns the current learning rate given
      the current global_step
    momentum: momentum term used for optimization
    data_format: Input format ('channels_last', 'channels_first', or None).
      If set to None, the format is dependent on whether a GPU is available.
300
301
    resnet_version: Integer representing which version of the ResNet network to
      use. See README for details. Valid values: [1, 2]
302
303
    loss_scale: The factor to scale the loss for numerical stability. A detailed
      summary is present in the arg parser help text.
304
305
306
307
    loss_filter_fn: function that takes a string variable name and returns
      True if the var should be included in loss calculation, and False
      otherwise. If None, batch_normalization variables will be excluded
      from the loss.
308
    dtype: the TensorFlow dtype to use for calculations.
Zac Wellmer's avatar
Zac Wellmer committed
309
    fine_tune: If True only train the dense layers(final layers).
310
311
312
313
314
315
316

  Returns:
    EstimatorSpec parameterized according to the input params and the
    current mode.
  """

  # Generate a summary node for the images
317
  tf.compat.v1.summary.image('images', features, max_outputs=6)
318
319
  # Checks that features/images have same data type being used for calculations.
  assert features.dtype == dtype
320

321
322
  model = model_class(resnet_size, data_format, resnet_version=resnet_version,
                      dtype=dtype)
323

324
325
  logits = model(features, mode == tf.estimator.ModeKeys.TRAIN)

326
327
328
329
330
  # This acts as a no-op if the logits are already in fp32 (provided logits are
  # not a SparseTensor). If dtype is is low precision, logits must be cast to
  # fp32 for numerical stability.
  logits = tf.cast(logits, tf.float32)

331
  predictions = {
332
      'classes': tf.argmax(input=logits, axis=1),
333
334
335
336
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
337
338
339
340
341
342
343
    # Return the predictions and the specification for serving a SavedModel
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=predictions,
        export_outputs={
            'predict': tf.estimator.export.PredictOutput(predictions)
        })
344
345

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
346
  cross_entropy = tf.compat.v1.losses.sparse_softmax_cross_entropy(
347
      logits=logits, labels=labels)
348
349
350

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
351
  tf.compat.v1.summary.scalar('cross_entropy', cross_entropy)
352
353
354

  # If no loss_filter_fn is passed, assume we want the default behavior,
  # which is that batch_normalization variables are excluded from loss.
Karmel Allison's avatar
Karmel Allison committed
355
356
357
  def exclude_batch_norm(name):
    return 'batch_normalization' not in name
  loss_filter_fn = loss_filter_fn or exclude_batch_norm
358

359
360
361
  # Add weight decay to the loss. We need to scale the regularization loss
  # manually as losses other than in tf.losses and tf.keras.losses don't scale
  # automatically.
362
  l2_loss = weight_decay * tf.add_n(
363
      # loss is computed using fp32 for numerical stability.
364
365
      [
          tf.nn.l2_loss(tf.cast(v, tf.float32))
366
          for v in tf.compat.v1.trainable_variables()
367
368
          if loss_filter_fn(v.name)
      ]) / tf.distribute.get_strategy().num_replicas_in_sync
369
  tf.compat.v1.summary.scalar('l2_loss', l2_loss)
370
  loss = cross_entropy + l2_loss
371
372

  if mode == tf.estimator.ModeKeys.TRAIN:
373
    global_step = tf.compat.v1.train.get_or_create_global_step()
374
375
376
377
378

    learning_rate = learning_rate_fn(global_step)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
379
    tf.compat.v1.summary.scalar('learning_rate', learning_rate)
380

381
    optimizer = tf.compat.v1.train.MomentumOptimizer(
382
        learning_rate=learning_rate,
383
384
        momentum=momentum
    )
385

Zac Wellmer's avatar
Zac Wellmer committed
386
    def _dense_grad_filter(gvs):
387
388
389
390
      """Only apply gradient updates to the final layer.

      This function is used for fine tuning.

Zac Wellmer's avatar
Zac Wellmer committed
391
      Args:
392
        gvs: list of tuples with gradients and variable info
Zac Wellmer's avatar
Zac Wellmer committed
393
      Returns:
394
395
        filtered gradients so that only the dense layer remains
      """
Zac Wellmer's avatar
Zac Wellmer committed
396
397
      return [(g, v) for g, v in gvs if 'dense' in v.name]

398
399
400
401
402
403
    if loss_scale != 1:
      # When computing fp16 gradients, often intermediate tensor values are
      # so small, they underflow to 0. To avoid this, we multiply the loss by
      # loss_scale to make these tensor values loss_scale times bigger.
      scaled_grad_vars = optimizer.compute_gradients(loss * loss_scale)

Zac Wellmer's avatar
Zac Wellmer committed
404
405
406
      if fine_tune:
        scaled_grad_vars = _dense_grad_filter(scaled_grad_vars)

407
408
409
410
411
412
      # Once the gradient computation is complete we can scale the gradients
      # back to the correct scale before passing them to the optimizer.
      unscaled_grad_vars = [(grad / loss_scale, var)
                            for grad, var in scaled_grad_vars]
      minimize_op = optimizer.apply_gradients(unscaled_grad_vars, global_step)
    else:
Zac Wellmer's avatar
Zac Wellmer committed
413
414
415
416
      grad_vars = optimizer.compute_gradients(loss)
      if fine_tune:
        grad_vars = _dense_grad_filter(grad_vars)
      minimize_op = optimizer.apply_gradients(grad_vars, global_step)
417

418
    update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS)
419
    train_op = tf.group(minimize_op, update_ops)
420
421
422
  else:
    train_op = None

423
424
425
  accuracy = tf.compat.v1.metrics.accuracy(labels, predictions['classes'])
  accuracy_top_5 = tf.compat.v1.metrics.mean(
      tf.nn.in_top_k(predictions=logits, targets=labels, k=5, name='top_5_op'))
426
427
  metrics = {'accuracy': accuracy,
             'accuracy_top_5': accuracy_top_5}
428
429
430

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
431
  tf.identity(accuracy_top_5[1], name='train_accuracy_top_5')
432
433
  tf.compat.v1.summary.scalar('train_accuracy', accuracy[1])
  tf.compat.v1.summary.scalar('train_accuracy_top_5', accuracy_top_5[1])
434
435
436
437
438

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
439
440
      train_op=train_op,
      eval_metric_ops=metrics)
441
442


443
444
def resnet_main(
    flags_obj, model_function, input_function, dataset_name, shape=None):
445
446
447
  """Shared main loop for ResNet Models.

  Args:
448
449
    flags_obj: An object containing parsed flags. See define_resnet_flags()
      for details.
450
451
452
453
454
    model_function: the function that instantiates the Model and builds the
      ops for train/eval. This will be passed directly into the estimator.
    input_function: the function that processes the dataset and returns a
      dataset that the estimator can train on. This will be wrapped with
      all the relevant flags for running and passed to estimator.
455
456
    dataset_name: the name of the dataset for training and evaluation. This is
      used for logging purpose.
457
    shape: list of ints representing the shape of the images used for training.
458
      This is only used if flags_obj.export_dir is passed.
459
460
461

  Returns:
    Dict of results of the run.
462
  """
Karmel Allison's avatar
Karmel Allison committed
463

464
465
  model_helpers.apply_clean(flags.FLAGS)

Toby Boyd's avatar
Toby Boyd committed
466
  # Ensures flag override logic is only executed if explicitly triggered.
Toby Boyd's avatar
Toby Boyd committed
467
  if flags_obj.tf_gpu_thread_mode:
Toby Boyd's avatar
Toby Boyd committed
468
    override_flags_and_set_envars_for_gpu_thread_pool(flags_obj)
Toby Boyd's avatar
Toby Boyd committed
469

Toby Boyd's avatar
Toby Boyd committed
470
471
  # Creates session config. allow_soft_placement = True, is required for
  # multi-GPU and is not harmful for other modes.
472
  session_config = tf.compat.v1.ConfigProto(
Toby Boyd's avatar
Toby Boyd committed
473
474
475
      inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads,
      intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads,
      allow_soft_placement=True)
476

477
  distribution_strategy = distribution_utils.get_distribution_strategy(
478
479
480
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_core.get_num_gpus(flags_obj),
      all_reduce_alg=flags_obj.all_reduce_alg)
481

Toby Boyd's avatar
Toby Boyd committed
482
  # Creates a `RunConfig` that checkpoints every 24 hours which essentially
Toby Boyd's avatar
Toby Boyd committed
483
  # results in checkpoints determined only by `epochs_between_evals`.
484
  run_config = tf.estimator.RunConfig(
Toby Boyd's avatar
Toby Boyd committed
485
486
487
      train_distribute=distribution_strategy,
      session_config=session_config,
      save_checkpoints_secs=60*60*24)
488

Toby Boyd's avatar
Toby Boyd committed
489
  # Initializes model with all but the dense layer from pretrained ResNet.
Zac Wellmer's avatar
Zac Wellmer committed
490
491
492
493
494
495
496
  if flags_obj.pretrained_model_checkpoint_path is not None:
    warm_start_settings = tf.estimator.WarmStartSettings(
        flags_obj.pretrained_model_checkpoint_path,
        vars_to_warm_start='^(?!.*dense)')
  else:
    warm_start_settings = None

497
  classifier = tf.estimator.Estimator(
498
      model_fn=model_function, model_dir=flags_obj.model_dir, config=run_config,
Zac Wellmer's avatar
Zac Wellmer committed
499
      warm_start_from=warm_start_settings, params={
500
501
502
          'resnet_size': int(flags_obj.resnet_size),
          'data_format': flags_obj.data_format,
          'batch_size': flags_obj.batch_size,
503
          'resnet_version': int(flags_obj.resnet_version),
504
          'loss_scale': flags_core.get_loss_scale(flags_obj),
Zac Wellmer's avatar
Zac Wellmer committed
505
506
          'dtype': flags_core.get_tf_dtype(flags_obj),
          'fine_tune': flags_obj.fine_tune
507
508
      })

509
510
511
512
  run_params = {
      'batch_size': flags_obj.batch_size,
      'dtype': flags_core.get_tf_dtype(flags_obj),
      'resnet_size': flags_obj.resnet_size,
513
      'resnet_version': flags_obj.resnet_version,
514
515
516
      'synthetic_data': flags_obj.use_synthetic_data,
      'train_epochs': flags_obj.train_epochs,
  }
517
  if flags_obj.use_synthetic_data:
518
    dataset_name = dataset_name + '-synthetic'
519

520
  benchmark_logger = logger.get_benchmark_logger()
521
522
  benchmark_logger.log_run_info('resnet', dataset_name, run_params,
                                test_id=flags_obj.benchmark_test_id)
523

524
  train_hooks = hooks_helper.get_train_hooks(
525
      flags_obj.hooks,
526
      model_dir=flags_obj.model_dir,
527
      batch_size=flags_obj.batch_size)
528

Taylor Robie's avatar
Taylor Robie committed
529
  def input_fn_train(num_epochs):
530
    return input_function(
Toby Boyd's avatar
Toby Boyd committed
531
532
        is_training=True,
        data_dir=flags_obj.data_dir,
533
        batch_size=distribution_utils.per_device_batch_size(
534
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
Taylor Robie's avatar
Taylor Robie committed
535
        num_epochs=num_epochs,
Toby Boyd's avatar
Toby Boyd committed
536
537
        dtype=flags_core.get_tf_dtype(flags_obj),
        datasets_num_private_threads=flags_obj.datasets_num_private_threads,
Toby Boyd's avatar
Toby Boyd committed
538
        num_parallel_batches=flags_obj.datasets_num_parallel_batches)
539

540
  def input_fn_eval():
541
    return input_function(
Toby Boyd's avatar
Toby Boyd committed
542
543
        is_training=False,
        data_dir=flags_obj.data_dir,
544
        batch_size=distribution_utils.per_device_batch_size(
545
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
546
547
        num_epochs=1,
        dtype=flags_core.get_tf_dtype(flags_obj))
Taylor Robie's avatar
Taylor Robie committed
548

Taylor Robie's avatar
Taylor Robie committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
  if flags_obj.eval_only or not flags_obj.train_epochs:
    # If --eval_only is set, perform a single loop with zero train epochs.
    schedule, n_loops = [0], 1
  else:
    # Compute the number of times to loop while training. All but the last
    # pass will train for `epochs_between_evals` epochs, while the last will
    # train for the number needed to reach `training_epochs`. For instance if
    #   train_epochs = 25 and epochs_between_evals = 10
    # schedule will be set to [10, 10, 5]. That is to say, the loop will:
    #   Train for 10 epochs and then evaluate.
    #   Train for another 10 epochs and then evaluate.
    #   Train for a final 5 epochs (to reach 25 epochs) and then evaluate.
    n_loops = math.ceil(flags_obj.train_epochs / flags_obj.epochs_between_evals)
    schedule = [flags_obj.epochs_between_evals for _ in range(int(n_loops))]
    schedule[-1] = flags_obj.train_epochs - sum(schedule[:-1])  # over counting.

  for cycle_index, num_train_epochs in enumerate(schedule):
566
567
    tf.compat.v1.logging.info('Starting cycle: %d/%d', cycle_index,
                              int(n_loops))
Taylor Robie's avatar
Taylor Robie committed
568
569
570
571

    if num_train_epochs:
      classifier.train(input_fn=lambda: input_fn_train(num_train_epochs),
                       hooks=train_hooks, max_steps=flags_obj.max_train_steps)
572

573
    tf.compat.v1.logging.info('Starting to evaluate.')
574
575
576
577
578

    # flags_obj.max_train_steps is generally associated with testing and
    # profiling. As a result it is frequently called with synthetic data, which
    # will iterate forever. Passing steps=flags_obj.max_train_steps allows the
    # eval (which is generally unimportant in those circumstances) to terminate.
579
580
581
    # Note that eval will run for max_train_steps each loop, regardless of the
    # global_step count.
    eval_results = classifier.evaluate(input_fn=input_fn_eval,
582
                                       steps=flags_obj.max_train_steps)
583

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
584
    benchmark_logger.log_evaluation_result(eval_results)
585

586
    if model_helpers.past_stop_threshold(
587
        flags_obj.stop_threshold, eval_results['accuracy']):
588
589
      break

590
  if flags_obj.export_dir is not None:
591
    # Exports a saved model for the given classifier.
592
    export_dtype = flags_core.get_tf_dtype(flags_obj)
593
    if flags_obj.image_bytes_as_serving_input:
594
595
      input_receiver_fn = functools.partial(
          image_bytes_serving_input_fn, shape, dtype=export_dtype)
596
597
    else:
      input_receiver_fn = export.build_tensor_serving_input_receiver_fn(
598
599
600
          shape, batch_size=flags_obj.batch_size, dtype=export_dtype)
    classifier.export_savedmodel(flags_obj.export_dir, input_receiver_fn,
                                 strip_default_attrs=True)
601
602
603
604
605
606
607

  stats = {}
  stats['eval_results'] = eval_results
  stats['train_hooks'] = train_hooks

  return stats

608

609
610
611
def define_resnet_flags(resnet_size_choices=None):
  """Add flags and validators for ResNet."""
  flags_core.define_base()
Toby Boyd's avatar
Toby Boyd committed
612
613
614
615
  flags_core.define_performance(num_parallel_calls=False,
                                tf_gpu_thread_mode=True,
                                datasets_num_private_threads=True,
                                datasets_num_parallel_batches=True)
616
617
618
  flags_core.define_image()
  flags_core.define_benchmark()
  flags.adopt_module_key_flags(flags_core)
619

620
  flags.DEFINE_enum(
Toby Boyd's avatar
Toby Boyd committed
621
      name='resnet_version', short_name='rv', default='1',
622
      enum_values=['1', '2'],
623
624
      help=flags_core.help_wrap(
          'Version of ResNet. (1 or 2) See README.md for details.'))
Zac Wellmer's avatar
Zac Wellmer committed
625
626
627
628
629
630
631
632
633
  flags.DEFINE_bool(
      name='fine_tune', short_name='ft', default=False,
      help=flags_core.help_wrap(
          'If True do not train any parameters except for the final layer.'))
  flags.DEFINE_string(
      name='pretrained_model_checkpoint_path', short_name='pmcp', default=None,
      help=flags_core.help_wrap(
          'If not None initialize all the network except the final layer with '
          'these values'))
Taylor Robie's avatar
Taylor Robie committed
634
  flags.DEFINE_boolean(
635
      name='eval_only', default=False,
Taylor Robie's avatar
Taylor Robie committed
636
637
      help=flags_core.help_wrap('Skip training and only perform evaluation on '
                                'the latest checkpoint.'))
638
  flags.DEFINE_boolean(
Toby Boyd's avatar
Toby Boyd committed
639
      name='image_bytes_as_serving_input', default=False,
640
641
642
643
644
645
646
      help=flags_core.help_wrap(
          'If True exports savedmodel with serving signature that accepts '
          'JPEG image bytes instead of a fixed size [HxWxC] tensor that '
          'represents the image. The former is easier to use for serving at '
          'the expense of image resize/cropping being done as part of model '
          'inference. Note, this flag only applies to ImageNet and cannot '
          'be used for CIFAR.'))
647
648
649
  choice_kwargs = dict(
      name='resnet_size', short_name='rs', default='50',
      help=flags_core.help_wrap('The size of the ResNet model to use.'))
650

651
652
653
654
  if resnet_size_choices is None:
    flags.DEFINE_string(**choice_kwargs)
  else:
    flags.DEFINE_enum(enum_values=resnet_size_choices, **choice_kwargs)