"client_example/CMakeLists.txt" did not exist on "b653c5eb2e440a181dde86fc29696851f329ab96"
resnet_run_loop.py 23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains utility and supporting functions for ResNet.

  This module contains ResNet code which does not directly build layers. This
includes dataset management, hyperparameter and optimizer code, and argument
parsing. Code for defining the ResNet layers can be found in resnet_model.py.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Taylor Robie's avatar
Taylor Robie committed
26
import math
27
28
import os

29
# pylint: disable=g-bad-import-order
30
from absl import flags
31
import tensorflow as tf
32
33

from official.resnet import resnet_model
34
from official.utils.flags import core as flags_core
35
from official.utils.export import export
36
37
from official.utils.logs import hooks_helper
from official.utils.logs import logger
38
from official.utils.misc import distribution_utils
39
from official.utils.misc import model_helpers
40
# pylint: enable=g-bad-import-order
41
42
43
44
45
46


################################################################################
# Functions for input processing.
################################################################################
def process_record_dataset(dataset, is_training, batch_size, shuffle_buffer,
Taylor Robie's avatar
Taylor Robie committed
47
48
                           parse_record_fn, num_epochs=1, num_gpus=None,
                           examples_per_epoch=None):
Karmel Allison's avatar
Karmel Allison committed
49
  """Given a Dataset with raw records, return an iterator over the records.
50
51
52
53
54
55
56
57
58
59
60

  Args:
    dataset: A Dataset representing raw records
    is_training: A boolean denoting whether the input is for training.
    batch_size: The number of samples per batch.
    shuffle_buffer: The buffer size to use when shuffling records. A larger
      value results in better randomness, but smaller values reduce startup
      time and use less memory.
    parse_record_fn: A function that takes a raw record and returns the
      corresponding (image, label) pair.
    num_epochs: The number of epochs to repeat the dataset.
Taylor Robie's avatar
Taylor Robie committed
61
62
    num_gpus: The number of gpus used for training.
    examples_per_epoch: The number of examples in an epoch.
63
64
65
66

  Returns:
    Dataset of (image, label) pairs ready for iteration.
  """
67

68
69
70
71
72
73
74
75
76
77
78
79
  # We prefetch a batch at a time, This can help smooth out the time taken to
  # load input files as we go through shuffling and processing.
  dataset = dataset.prefetch(buffer_size=batch_size)
  if is_training:
    # Shuffle the records. Note that we shuffle before repeating to ensure
    # that the shuffling respects epoch boundaries.
    dataset = dataset.shuffle(buffer_size=shuffle_buffer)

  # If we are training over multiple epochs before evaluating, repeat the
  # dataset for the appropriate number of epochs.
  dataset = dataset.repeat(num_epochs)

Taylor Robie's avatar
Taylor Robie committed
80
81
82
83
84
85
86
87
88
89
  if is_training and num_gpus and examples_per_epoch:
    total_examples = num_epochs * examples_per_epoch
    # Force the number of batches to be divisible by the number of devices.
    # This prevents some devices from receiving batches while others do not,
    # which can lead to a lockup. This case will soon be handled directly by
    # distribution strategies, at which point this .take() operation will no
    # longer be needed.
    total_batches = total_examples // batch_size // num_gpus * num_gpus
    dataset.take(total_batches * batch_size)

90
91
92
93
94
95
96
  # Parse the raw records into images and labels. Testing has shown that setting
  # num_parallel_batches > 1 produces no improvement in throughput, since
  # batch_size is almost always much greater than the number of CPU cores.
  dataset = dataset.apply(
      tf.contrib.data.map_and_batch(
          lambda value: parse_record_fn(value, is_training),
          batch_size=batch_size,
97
          num_parallel_batches=1,
98
          drop_remainder=False))
99
100
101
102

  # Operations between the final prefetch and the get_next call to the iterator
  # will happen synchronously during run time. We prefetch here again to
  # background all of the above processing work and keep it out of the
103
104
105
  # critical training path. Setting buffer_size to tf.contrib.data.AUTOTUNE
  # allows DistributionStrategies to adjust how many batches to fetch based
  # on how many devices are present.
106
  dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
107
108
109
110

  return dataset


Toby Boyd's avatar
Toby Boyd committed
111
112
113
def get_synth_input_fn(height, width, num_channels, num_classes,
                       dtype=tf.float32):
  """Returns an input function that returns a dataset with random data.
114

Toby Boyd's avatar
Toby Boyd committed
115
116
  This input_fn removed all aspects of the input pipeline other than the
  host to device copy. This is useful in debugging input pipeline performance.
117
118
119
120
121
122
123

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
Toby Boyd's avatar
Toby Boyd committed
124
    dtype: Data type for features/images.
125
126
127
128
129

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
Toby Boyd's avatar
Toby Boyd committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
    # Synthetic input should be within [0, 255].
    inputs = tf.truncated_normal(
        [batch_size] + [height, width, num_channels],
        dtype=dtype,
        mean=127,
        stddev=60,
        name='synthetic_inputs')

    labels = tf.random_uniform(
        [batch_size],
        minval=0,
        maxval=num_classes - 1,
        dtype=tf.int32,
        name='synthetic_labels')
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
    data = data.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
    return data
150
151
152
153
154
155
156
157

  return input_fn


################################################################################
# Functions for running training/eval/validation loops for the model.
################################################################################
def learning_rate_with_decay(
158
159
    batch_size, batch_denom, num_images, boundary_epochs, decay_rates,
    base_lr=0.1, warmup=False):
160
161
162
163
164
165
166
167
168
169
170
  """Get a learning rate that decays step-wise as training progresses.

  Args:
    batch_size: the number of examples processed in each training batch.
    batch_denom: this value will be used to scale the base learning rate.
      `0.1 * batch size` is divided by this number, such that when
      batch_denom == batch_size, the initial learning rate will be 0.1.
    num_images: total number of images that will be used for training.
    boundary_epochs: list of ints representing the epochs at which we
      decay the learning rate.
    decay_rates: list of floats representing the decay rates to be used
171
172
      for scaling the learning rate. It should have one more element
      than `boundary_epochs`, and all elements should have the same type.
173
174
    base_lr: Initial learning rate scaled based on batch_denom.
    warmup: Run a 5 epoch warmup to the initial lr.
175
176
177
178
179
  Returns:
    Returns a function that takes a single argument - the number of batches
    trained so far (global_step)- and returns the learning rate to be used
    for training the next batch.
  """
180
  initial_learning_rate = base_lr * batch_size / batch_denom
181
182
  batches_per_epoch = num_images / batch_size

Taylor Robie's avatar
Taylor Robie committed
183
184
185
  # Reduce the learning rate at certain epochs.
  # CIFAR-10: divide by 10 at epoch 100, 150, and 200
  # ImageNet: divide by 10 at epoch 30, 60, 80, and 90
186
187
188
189
  boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs]
  vals = [initial_learning_rate * decay for decay in decay_rates]

  def learning_rate_fn(global_step):
190
191
192
193
194
195
196
197
198
    """Builds scaled learning rate function with 5 epoch warm up."""
    lr = tf.train.piecewise_constant(global_step, boundaries, vals)
    if warmup:
      warmup_steps = int(batches_per_epoch * 5)
      warmup_lr = (
          initial_learning_rate * tf.cast(global_step, tf.float32) / tf.cast(
              warmup_steps, tf.float32))
      return tf.cond(global_step < warmup_steps, lambda: warmup_lr, lambda: lr)
    return lr
199
200
201
202
203
204

  return learning_rate_fn


def resnet_model_fn(features, labels, mode, model_class,
                    resnet_size, weight_decay, learning_rate_fn, momentum,
205
                    data_format, resnet_version, loss_scale,
Zac Wellmer's avatar
Zac Wellmer committed
206
207
                    loss_filter_fn=None, dtype=resnet_model.DEFAULT_DTYPE,
                    fine_tune=False):
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
  """Shared functionality for different resnet model_fns.

  Initializes the ResnetModel representing the model layers
  and uses that model to build the necessary EstimatorSpecs for
  the `mode` in question. For training, this means building losses,
  the optimizer, and the train op that get passed into the EstimatorSpec.
  For evaluation and prediction, the EstimatorSpec is returned without
  a train op, but with the necessary parameters for the given mode.

  Args:
    features: tensor representing input images
    labels: tensor representing class labels for all input images
    mode: current estimator mode; should be one of
      `tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`
    model_class: a class representing a TensorFlow model that has a __call__
      function. We assume here that this is a subclass of ResnetModel.
    resnet_size: A single integer for the size of the ResNet model.
    weight_decay: weight decay loss rate used to regularize learned variables.
    learning_rate_fn: function that returns the current learning rate given
      the current global_step
    momentum: momentum term used for optimization
    data_format: Input format ('channels_last', 'channels_first', or None).
      If set to None, the format is dependent on whether a GPU is available.
231
232
    resnet_version: Integer representing which version of the ResNet network to
      use. See README for details. Valid values: [1, 2]
233
234
    loss_scale: The factor to scale the loss for numerical stability. A detailed
      summary is present in the arg parser help text.
235
236
237
238
    loss_filter_fn: function that takes a string variable name and returns
      True if the var should be included in loss calculation, and False
      otherwise. If None, batch_normalization variables will be excluded
      from the loss.
239
    dtype: the TensorFlow dtype to use for calculations.
Zac Wellmer's avatar
Zac Wellmer committed
240
    fine_tune: If True only train the dense layers(final layers).
241
242
243
244
245
246
247
248

  Returns:
    EstimatorSpec parameterized according to the input params and the
    current mode.
  """

  # Generate a summary node for the images
  tf.summary.image('images', features, max_outputs=6)
Toby Boyd's avatar
Toby Boyd committed
249
  # TODO(tobyboyd): Add cast as part of input pipeline on cpu and remove.
250
251
  features = tf.cast(features, dtype)

252
253
  model = model_class(resnet_size, data_format, resnet_version=resnet_version,
                      dtype=dtype)
254

255
256
  logits = model(features, mode == tf.estimator.ModeKeys.TRAIN)

257
258
259
260
261
  # This acts as a no-op if the logits are already in fp32 (provided logits are
  # not a SparseTensor). If dtype is is low precision, logits must be cast to
  # fp32 for numerical stability.
  logits = tf.cast(logits, tf.float32)

262
263
264
265
266
267
  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
268
269
270
271
272
273
274
    # Return the predictions and the specification for serving a SavedModel
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=predictions,
        export_outputs={
            'predict': tf.estimator.export.PredictOutput(predictions)
        })
275
276

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
277
278
  cross_entropy = tf.losses.sparse_softmax_cross_entropy(
      logits=logits, labels=labels)
279
280
281
282
283
284
285

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # If no loss_filter_fn is passed, assume we want the default behavior,
  # which is that batch_normalization variables are excluded from loss.
Karmel Allison's avatar
Karmel Allison committed
286
287
288
  def exclude_batch_norm(name):
    return 'batch_normalization' not in name
  loss_filter_fn = loss_filter_fn or exclude_batch_norm
289
290

  # Add weight decay to the loss.
291
  l2_loss = weight_decay * tf.add_n(
292
293
      # loss is computed using fp32 for numerical stability.
      [tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables()
294
       if loss_filter_fn(v.name)])
295
296
  tf.summary.scalar('l2_loss', l2_loss)
  loss = cross_entropy + l2_loss
297
298
299
300
301
302
303
304
305
306
307
308

  if mode == tf.estimator.ModeKeys.TRAIN:
    global_step = tf.train.get_or_create_global_step()

    learning_rate = learning_rate_fn(global_step)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
309
310
        momentum=momentum
    )
311

Zac Wellmer's avatar
Zac Wellmer committed
312
    def _dense_grad_filter(gvs):
313
314
315
316
      """Only apply gradient updates to the final layer.

      This function is used for fine tuning.

Zac Wellmer's avatar
Zac Wellmer committed
317
      Args:
318
        gvs: list of tuples with gradients and variable info
Zac Wellmer's avatar
Zac Wellmer committed
319
      Returns:
320
321
        filtered gradients so that only the dense layer remains
      """
Zac Wellmer's avatar
Zac Wellmer committed
322
323
      return [(g, v) for g, v in gvs if 'dense' in v.name]

324
325
326
327
328
329
    if loss_scale != 1:
      # When computing fp16 gradients, often intermediate tensor values are
      # so small, they underflow to 0. To avoid this, we multiply the loss by
      # loss_scale to make these tensor values loss_scale times bigger.
      scaled_grad_vars = optimizer.compute_gradients(loss * loss_scale)

Zac Wellmer's avatar
Zac Wellmer committed
330
331
332
      if fine_tune:
        scaled_grad_vars = _dense_grad_filter(scaled_grad_vars)

333
334
335
336
337
338
      # Once the gradient computation is complete we can scale the gradients
      # back to the correct scale before passing them to the optimizer.
      unscaled_grad_vars = [(grad / loss_scale, var)
                            for grad, var in scaled_grad_vars]
      minimize_op = optimizer.apply_gradients(unscaled_grad_vars, global_step)
    else:
Zac Wellmer's avatar
Zac Wellmer committed
339
340
341
342
      grad_vars = optimizer.compute_gradients(loss)
      if fine_tune:
        grad_vars = _dense_grad_filter(grad_vars)
      minimize_op = optimizer.apply_gradients(grad_vars, global_step)
343

344
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
345
    train_op = tf.group(minimize_op, update_ops)
346
347
348
  else:
    train_op = None

349
  accuracy = tf.metrics.accuracy(labels, predictions['classes'])
350
351
352
353
354
355
  accuracy_top_5 = tf.metrics.mean(tf.nn.in_top_k(predictions=logits,
                                                  targets=labels,
                                                  k=5,
                                                  name='top_5_op'))
  metrics = {'accuracy': accuracy,
             'accuracy_top_5': accuracy_top_5}
356
357
358

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
359
  tf.identity(accuracy_top_5[1], name='train_accuracy_top_5')
360
  tf.summary.scalar('train_accuracy', accuracy[1])
361
  tf.summary.scalar('train_accuracy_top_5', accuracy_top_5[1])
362
363
364
365
366
367
368
369
370

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


371
372
def resnet_main(
    flags_obj, model_function, input_function, dataset_name, shape=None):
373
374
375
  """Shared main loop for ResNet Models.

  Args:
376
377
    flags_obj: An object containing parsed flags. See define_resnet_flags()
      for details.
378
379
380
381
382
    model_function: the function that instantiates the Model and builds the
      ops for train/eval. This will be passed directly into the estimator.
    input_function: the function that processes the dataset and returns a
      dataset that the estimator can train on. This will be wrapped with
      all the relevant flags for running and passed to estimator.
383
384
    dataset_name: the name of the dataset for training and evaluation. This is
      used for logging purpose.
385
    shape: list of ints representing the shape of the images used for training.
386
      This is only used if flags_obj.export_dir is passed.
387
  """
Karmel Allison's avatar
Karmel Allison committed
388

389
390
  model_helpers.apply_clean(flags.FLAGS)

391
392
393
394
395
396
397
398
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

  # Create session config based on values of inter_op_parallelism_threads and
  # intra_op_parallelism_threads. Note that we default to having
  # allow_soft_placement = True, which is required for multi-GPU and not
  # harmful for other modes.
  session_config = tf.ConfigProto(
399
400
      inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads,
      intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads,
401
402
      allow_soft_placement=True)

403
404
  distribution_strategy = distribution_utils.get_distribution_strategy(
      flags_core.get_num_gpus(flags_obj), flags_obj.all_reduce_alg)
405

406
407
  run_config = tf.estimator.RunConfig(
      train_distribute=distribution_strategy, session_config=session_config)
408

Zac Wellmer's avatar
Zac Wellmer committed
409
410
411
412
413
414
415
416
  # initialize our model with all but the dense layer from pretrained resnet
  if flags_obj.pretrained_model_checkpoint_path is not None:
    warm_start_settings = tf.estimator.WarmStartSettings(
        flags_obj.pretrained_model_checkpoint_path,
        vars_to_warm_start='^(?!.*dense)')
  else:
    warm_start_settings = None

417
  classifier = tf.estimator.Estimator(
418
      model_fn=model_function, model_dir=flags_obj.model_dir, config=run_config,
Zac Wellmer's avatar
Zac Wellmer committed
419
      warm_start_from=warm_start_settings, params={
420
421
422
          'resnet_size': int(flags_obj.resnet_size),
          'data_format': flags_obj.data_format,
          'batch_size': flags_obj.batch_size,
423
          'resnet_version': int(flags_obj.resnet_version),
424
          'loss_scale': flags_core.get_loss_scale(flags_obj),
Zac Wellmer's avatar
Zac Wellmer committed
425
426
          'dtype': flags_core.get_tf_dtype(flags_obj),
          'fine_tune': flags_obj.fine_tune
427
428
      })

429
430
431
432
  run_params = {
      'batch_size': flags_obj.batch_size,
      'dtype': flags_core.get_tf_dtype(flags_obj),
      'resnet_size': flags_obj.resnet_size,
433
      'resnet_version': flags_obj.resnet_version,
434
435
436
      'synthetic_data': flags_obj.use_synthetic_data,
      'train_epochs': flags_obj.train_epochs,
  }
437
  if flags_obj.use_synthetic_data:
438
    dataset_name = dataset_name + '-synthetic'
439

440
  benchmark_logger = logger.get_benchmark_logger()
441
442
  benchmark_logger.log_run_info('resnet', dataset_name, run_params,
                                test_id=flags_obj.benchmark_test_id)
443

444
  train_hooks = hooks_helper.get_train_hooks(
445
      flags_obj.hooks,
446
      model_dir=flags_obj.model_dir,
447
      batch_size=flags_obj.batch_size)
448

Taylor Robie's avatar
Taylor Robie committed
449
  def input_fn_train(num_epochs):
450
451
    return input_function(
        is_training=True, data_dir=flags_obj.data_dir,
452
        batch_size=distribution_utils.per_device_batch_size(
453
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
Taylor Robie's avatar
Taylor Robie committed
454
        num_epochs=num_epochs,
Taylor Robie's avatar
Taylor Robie committed
455
        num_gpus=flags_core.get_num_gpus(flags_obj))
456

457
  def input_fn_eval():
458
459
    return input_function(
        is_training=False, data_dir=flags_obj.data_dir,
460
        batch_size=distribution_utils.per_device_batch_size(
461
462
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
        num_epochs=1)
Taylor Robie's avatar
Taylor Robie committed
463

Taylor Robie's avatar
Taylor Robie committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
  if flags_obj.eval_only or not flags_obj.train_epochs:
    # If --eval_only is set, perform a single loop with zero train epochs.
    schedule, n_loops = [0], 1
  else:
    # Compute the number of times to loop while training. All but the last
    # pass will train for `epochs_between_evals` epochs, while the last will
    # train for the number needed to reach `training_epochs`. For instance if
    #   train_epochs = 25 and epochs_between_evals = 10
    # schedule will be set to [10, 10, 5]. That is to say, the loop will:
    #   Train for 10 epochs and then evaluate.
    #   Train for another 10 epochs and then evaluate.
    #   Train for a final 5 epochs (to reach 25 epochs) and then evaluate.
    n_loops = math.ceil(flags_obj.train_epochs / flags_obj.epochs_between_evals)
    schedule = [flags_obj.epochs_between_evals for _ in range(int(n_loops))]
    schedule[-1] = flags_obj.train_epochs - sum(schedule[:-1])  # over counting.

  for cycle_index, num_train_epochs in enumerate(schedule):
    tf.logging.info('Starting cycle: %d/%d', cycle_index, int(n_loops))

    if num_train_epochs:
      classifier.train(input_fn=lambda: input_fn_train(num_train_epochs),
                       hooks=train_hooks, max_steps=flags_obj.max_train_steps)
486

487
    tf.logging.info('Starting to evaluate.')
488
489
490
491
492

    # flags_obj.max_train_steps is generally associated with testing and
    # profiling. As a result it is frequently called with synthetic data, which
    # will iterate forever. Passing steps=flags_obj.max_train_steps allows the
    # eval (which is generally unimportant in those circumstances) to terminate.
493
494
495
    # Note that eval will run for max_train_steps each loop, regardless of the
    # global_step count.
    eval_results = classifier.evaluate(input_fn=input_fn_eval,
496
                                       steps=flags_obj.max_train_steps)
497

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
498
    benchmark_logger.log_evaluation_result(eval_results)
499

500
    if model_helpers.past_stop_threshold(
501
        flags_obj.stop_threshold, eval_results['accuracy']):
502
503
      break

504
  if flags_obj.export_dir is not None:
505
506
    # Exports a saved model for the given classifier.
    input_receiver_fn = export.build_tensor_serving_input_receiver_fn(
507
508
        shape, batch_size=flags_obj.batch_size)
    classifier.export_savedmodel(flags_obj.export_dir, input_receiver_fn)
509
510


511
512
513
def define_resnet_flags(resnet_size_choices=None):
  """Add flags and validators for ResNet."""
  flags_core.define_base()
514
  flags_core.define_performance(num_parallel_calls=False)
515
516
517
  flags_core.define_image()
  flags_core.define_benchmark()
  flags.adopt_module_key_flags(flags_core)
518

519
  flags.DEFINE_enum(
520
521
      name='resnet_version', short_name='rv', default='2',
      enum_values=['1', '2'],
522
523
      help=flags_core.help_wrap(
          'Version of ResNet. (1 or 2) See README.md for details.'))
Zac Wellmer's avatar
Zac Wellmer committed
524
525
526
527
528
529
530
531
532
  flags.DEFINE_bool(
      name='fine_tune', short_name='ft', default=False,
      help=flags_core.help_wrap(
          'If True do not train any parameters except for the final layer.'))
  flags.DEFINE_string(
      name='pretrained_model_checkpoint_path', short_name='pmcp', default=None,
      help=flags_core.help_wrap(
          'If not None initialize all the network except the final layer with '
          'these values'))
Taylor Robie's avatar
Taylor Robie committed
533
534
535
536
  flags.DEFINE_boolean(
      name="eval_only", default=False,
      help=flags_core.help_wrap('Skip training and only perform evaluation on '
                                'the latest checkpoint.'))
537

538
539
540
  choice_kwargs = dict(
      name='resnet_size', short_name='rs', default='50',
      help=flags_core.help_wrap('The size of the ResNet model to use.'))
541

542
543
544
545
  if resnet_size_choices is None:
    flags.DEFINE_string(**choice_kwargs)
  else:
    flags.DEFINE_enum(enum_values=resnet_size_choices, **choice_kwargs)