gen_onnx.py 247 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
24
25
# This script generates onnx files for MIGraphX onnx operator tests.
# To generate an individual onnx file, you can use the following
Brian Pickrell's avatar
Brian Pickrell committed
26
# command: python3 -c "import gen_onnx; gen_onnx.{test_name}_test()"
Khalique's avatar
Khalique committed
27
28
29
import numpy as np
import onnx
from onnx import helper
30
from onnx import TensorProto
31
32
33
34
from onnx.numpy_helper import from_array


def onnx_test(external_data=False):
Alan Turner's avatar
Alan Turner committed
35

36
    def create_onnx_test(op_test):
Alan Turner's avatar
Alan Turner committed
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        def run_test():
            op_info = op_test()
            if len(op_info) > 3:
                graph_def = helper.make_graph(op_info[0],
                                              op_test.__name__,
                                              op_info[1],
                                              op_info[2],
                                              initializer=op_info[3])
            else:
                graph_def = helper.make_graph(op_info[0], op_test.__name__,
                                              op_info[1], op_info[2])
            model_def = helper.make_model(graph_def,
                                          producer_name=op_test.__name__)
            onnx.save_model(model_def,
                            '{}.onnx'.format(op_test.__name__),
                            save_as_external_data=external_data,
                            location='{}.weight'.format(op_test.__name__),
                            size_threshold=0,
                            convert_attribute=True)

        return run_test

    return create_onnx_test


@onnx_test()
Khalique's avatar
Khalique committed
64
65
66
67
68
69
70
71
72
73
def acos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
74
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
75

Khalique's avatar
Khalique committed
76

77
@onnx_test()
78
79
80
81
82
83
84
85
86
87
88
89
90
def acosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acosh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


91
@onnx_test()
Khalique's avatar
Khalique committed
92
93
94
def add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
95
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
96

Khalique's avatar
Khalique committed
97
98
99
100
101
102
103
    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 broadcast=1,
                                 axis=1,
                                 outputs=['2'])

    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
104
105


106
@onnx_test()
Khalique's avatar
Khalique committed
107
108
109
110
111
112
113
114
115
116
117
def add_fp16_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
118
    return (
Khalique's avatar
Khalique committed
119
        [node],
Khalique's avatar
Khalique committed
120
        [x, y],
Khalique's avatar
Khalique committed
121
122
        [z],
        # '0' -> 1.5, '1' -> 2.5
Khalique's avatar
Khalique committed
123
124
125
126
        [
            onnx.helper.make_tensor('0', TensorProto.FLOAT16, [1], [15872]),
            onnx.helper.make_tensor('1', TensorProto.FLOAT16, [1], [16640])
        ])
Khalique's avatar
Khalique committed
127
128


129
@onnx_test()
Khalique's avatar
Khalique committed
130
def add_scalar_test():
131
132
133
    x = helper.make_tensor_value_info('0', TensorProto.UINT8, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.UINT8, [])
    z = helper.make_tensor_value_info('2', TensorProto.UINT8, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
134

Khalique's avatar
Khalique committed
135
136
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

137
    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
138
139


140
@onnx_test()
Khalique's avatar
Khalique committed
141
142
143
144
def argmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

Khalique's avatar
Khalique committed
145
146
147
148
149
    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)
Khalique's avatar
Khalique committed
150

Khalique's avatar
Khalique committed
151
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
152

Khalique's avatar
Khalique committed
153

154
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
155
156
157
158
159
160
161
162
163
164
165
166
167
def argmax_dyn_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 4, 6])

    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)

    return ([node], [x], [y])


168
@onnx_test()
Khalique's avatar
Khalique committed
169
170
171
172
def argmin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

Khalique's avatar
Khalique committed
173
174
175
176
177
    node = onnx.helper.make_node('ArgMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=3,
                                 keepdims=0)
Khalique's avatar
Khalique committed
178

Khalique's avatar
Khalique committed
179
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
180

Khalique's avatar
Khalique committed
181

182
@onnx_test()
Khalique's avatar
Khalique committed
183
184
185
186
187
188
189
190
191
192
def asin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
193
194
    return ([node], [x], [y])

Khalique's avatar
Khalique committed
195

196
@onnx_test()
197
198
199
200
201
202
203
204
205
206
207
208
209
def asinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


210
@onnx_test()
Khalique's avatar
Khalique committed
211
212
213
214
215
216
217
218
219
def atan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
220

Khalique's avatar
Khalique committed
221
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
222

Khalique's avatar
Khalique committed
223

224
@onnx_test()
225
226
227
228
229
230
231
232
233
234
235
236
237
def atanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atanh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


238
@onnx_test()
239
240
241
242
243
244
245
246
247
248
249
250
def averagepool_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3])

    return ([node], [x], [out])


251
@onnx_test()
252
253
254
255
256
257
258
259
260
261
262
263
264
def averagepool_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [1, 3, 3, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3, 3, 3])

    return ([node], [x], [out])


265
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
def averagepool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [None, 3, 3, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3, 3, 3])

    return ([node], [x], [out])


280
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
281
282
283
284
285
286
287
288
289
290
291
292
293
def averagepool_dyn_autopad_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER')

    return ([node], [x], [y])


294
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
def averagepool_dyn_asym_padding_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x], [y])


309
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
310
311
312
313
314
315
316
317
318
319
320
321
322
def averagepool_dyn_cip_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 count_include_pad=1)

    return ([node], [x], [y])


323
@onnx_test()
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
def averagepool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


339
@onnx_test()
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
def averagepool_nt_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET',
                                 count_include_pad=1)

    return ([node], [x], [y])


356
@onnx_test()
357
358
359
360
361
362
363
364
365
366
367
368
369
def averagepool_same_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER')

    return ([node], [x], [y])


370
@onnx_test()
371
372
373
374
375
376
377
378
379
380
381
382
383
384
def averagepool_sl_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER',
                                 count_include_pad=1)

    return ([node], [x], [y])


385
@onnx_test()
386
387
388
389
390
391
392
393
394
395
396
397
398
def averagepool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


399
@onnx_test()
400
401
402
403
404
405
406
407
408
409
410
411
412
def batch_norm_flat_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [1])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [1])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'],
        epsilon=1e-6)
413
414
415
416

    return ([node], [x, scale, bias, mean, var], [out])


417
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
def batch_norm_rank_2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [5])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [5])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [5])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [5])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'],
        epsilon=1e-6)

    return ([node], [x, scale, bias, mean, var], [out])


435
@onnx_test()
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
def batch_norm_1d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [2, 3, 4])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [2, 3, 4])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'])

    return ([node], [x, scale, bias, mean, var], [out])


452
@onnx_test()
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
def batch_norm_2d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4, 4])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 4])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'])

    return ([node], [x, scale, bias, mean, var], [out])


469
@onnx_test()
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
def batch_norm_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16,
                                      [2, 2, 2, 2, 2])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT16, [2])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT16, [2])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT16, [2])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT16,
                                        [2, 2, 2, 2, 2])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'],
        epsilon=1e-6)

    return ([node], [x, scale, bias, mean, var], [out])


489
@onnx_test()
490
491
492
493
494
495
496
497
498
499
500
501
def batch_norm_invalid_bias_rank_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4, 4])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [3, 1])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 4])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'])
502
503
504
505

    return ([node], [x, scale, bias, mean, var], [out])


506
@onnx_test()
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
def binary_dyn_brcst_prelu_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


523
@onnx_test()
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
def binary_dyn_brcst_add_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


540
@onnx_test()
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
def binary_dyn_brcst_attr_error_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 outputs=['out'],
                                 broadcast=1,
                                 axis=1)

    return ([node], [arg0, arg1], [arg_out])


557
@onnx_test()
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
def binary_dyn_brcst_mul_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node(
        'Mul',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


574
@onnx_test()
Khalique's avatar
Khalique committed
575
576
577
578
def cast_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

Khalique's avatar
Khalique committed
579
580
    node = onnx.helper.make_node('Cast', inputs=['x'], outputs=['y'], to=1)

Khalique's avatar
Khalique committed
581
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
582

kahmed10's avatar
kahmed10 committed
583

584
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
585
586
587
588
589
590
591
592
593
594
595
def ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Ceil',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
596

kahmed10's avatar
kahmed10 committed
597

598
@onnx_test()
599
600
601
602
603
604
605
606
607
608
609
610
def celu_alpha_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.8)

    return ([node], [x], [y])


611
@onnx_test()
612
613
614
615
616
617
618
619
620
def celu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


621
@onnx_test()
622
623
624
625
626
627
628
629
630
631
632
633
def celu_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.5)

    return ([node], [x], [y])


634
@onnx_test()
635
636
637
638
639
640
641
642
643
def celu_wrong_type_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [2, 3])

    node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


644
@onnx_test()
645
646
647
648
649
650
651
652
653
654
655
656
def celu_zero_alpha_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.0)

    return ([node], [x], [y])


657
@onnx_test()
Khalique's avatar
Khalique committed
658
659
660
661
def clip_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
662
663
664
665
666
    node = onnx.helper.make_node('Clip',
                                 inputs=['0'],
                                 outputs=['1'],
                                 max=6.0,
                                 min=0.0)
Khalique's avatar
Khalique committed
667

Khalique's avatar
Khalique committed
668
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
669

Khalique's avatar
Khalique committed
670

671
@onnx_test()
kahmed10's avatar
kahmed10 committed
672
673
674
675
676
677
678
679
680
681
682
683
684
685
def clip_test_op11():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])
    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [6.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [min_val, max_val])


686
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
687
688
689
690
691
692
693
694
695
696
697
698
699
def clip_test_op11_max_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', '', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [max_val])


700
@onnx_test()
kahmed10's avatar
kahmed10 committed
701
702
703
704
705
706
707
708
709
710
711
def clip_test_op11_min_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip', inputs=['0', 'min'], outputs=['1'])

    return ([node], [x], [y], [min_val])


712
@onnx_test()
kahmed10's avatar
kahmed10 committed
713
714
715
716
717
718
719
720
721
def clip_test_op11_no_args():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


722
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
723
724
725
726
727
728
729
730
731
def clip_test_op11_no_args1():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0', '', ''], outputs=['1'])

    return ([node], [x], [y])


732
@onnx_test()
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
def clip_test_args_type_mismatch():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [1, 3],
                                 [1.5, 2.5, 3.5])
    max_val = helper.make_tensor('max', TensorProto.INT64, [3, 1], [2, 3, 4])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [min_val, max_val])


748
@onnx_test()
Khalique's avatar
Khalique committed
749
750
751
752
753
754
755
756
757
758
759
760
def concat_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7, 4, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [9, 4, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
761
762
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
763

764
@onnx_test()
Khalique's avatar
Khalique committed
765
766
767
def constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
768

Khalique's avatar
Khalique committed
769
770
771
772
773
774
775
776
777
778
779
780
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.FLOAT,
            dims=x.shape,
            vals=x.flatten().astype(float),
        ),
    )

Khalique's avatar
Khalique committed
781
    return ([node], [], [y])
Khalique's avatar
Khalique committed
782

Khalique's avatar
Khalique committed
783

784
@onnx_test()
Khalique's avatar
Khalique committed
785
def constant_fill_test():
Khalique's avatar
Khalique committed
786
787
788
789
790
791
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=[],
        outputs=['value'],
Khalique's avatar
Khalique committed
792
793
794
795
        dtype=1,
        value=1.0,
        shape=[2, 3],
        input_as_shape=0,
Khalique's avatar
Khalique committed
796
797
    )

Khalique's avatar
Khalique committed
798
    return ([node], [], [value])
Khalique's avatar
Khalique committed
799

Khalique's avatar
Khalique committed
800

801
@onnx_test()
Khalique's avatar
Khalique committed
802
def constant_fill_input_as_shape_test():
Khalique's avatar
Khalique committed
803
    np_shape = np.array([2, 3])
Khalique's avatar
Khalique committed
804
805
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

Khalique's avatar
Khalique committed
806
807
808
809
    ts_shape = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=np_shape.shape,
                                  vals=np_shape.flatten().astype(int))
Khalique's avatar
Khalique committed
810
811
812
813
814
815
816
817
818
819
820
821

    const_shape_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=ts_shape,
    )

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=['shape'],
        outputs=['value'],
Khalique's avatar
Khalique committed
822
823
824
        dtype=1,
        value=1.0,
        input_as_shape=1,
Khalique's avatar
Khalique committed
825
826
    )

Khalique's avatar
Khalique committed
827
    return ([const_shape_node, node], [], [value])
Khalique's avatar
Khalique committed
828

Khalique's avatar
Khalique committed
829

830
@onnx_test()
Khalique's avatar
Khalique committed
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
def constant_scalar_test():
    x = np.array([1])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.INT32,
            dims=x.shape,
            vals=x.flatten().astype(int),
        ),
    )

Khalique's avatar
Khalique committed
847
    return ([node], [], [y])
Khalique's avatar
Khalique committed
848

Khalique's avatar
Khalique committed
849

850
@onnx_test()
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
def constant_empty_scalar_int64_test():
    x = np.array([]).astype(np.int64)
    y = helper.make_tensor_value_info('0', TensorProto.INT64, [0])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='one_element_tensor',
            data_type=TensorProto.INT64,
            dims=x.shape,
            vals=x.flatten().astype(np.int64),
        ),
    )

    return ([node], [], [y])


870
@onnx_test()
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
def constant_one_val_int64_test():
    x = np.array([1]).astype(np.int64)
    y = helper.make_tensor_value_info('0', TensorProto.INT64, [0])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='empty_tensor',
            data_type=TensorProto.INT64,
            dims=x.shape,
            vals=x.flatten().astype(np.int64),
        ),
    )

    return ([node], [], [y])


890
@onnx_test()
Khalique's avatar
Khalique committed
891
def const_of_shape_empty_input_test():
Khalique's avatar
Khalique committed
892
893
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
894
    empty_val = np.array([]).astype(np.int64)
Khalique's avatar
Khalique committed
895
896
897
898
    empty_ts = helper.make_tensor(name='empty_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=empty_val.shape,
                                  vals=empty_val.flatten().astype(int))
Khalique's avatar
Khalique committed
899
900
901
902
903
904
905
906
907
908
909
910
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=empty_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
Khalique's avatar
Khalique committed
911
        value=tensor_val,
Khalique's avatar
Khalique committed
912
913
    )

Khalique's avatar
Khalique committed
914
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
915

Khalique's avatar
Khalique committed
916

917
@onnx_test()
Khalique's avatar
Khalique committed
918
def const_of_shape_float_test():
Khalique's avatar
Khalique committed
919
920
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])
Khalique's avatar
Khalique committed
921
922

    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
923
924
925
926
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
927
928
929
930
931
932
933
934
935

    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

Khalique's avatar
Khalique committed
936
937
938
939
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
940

Khalique's avatar
Khalique committed
941
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
942

Khalique's avatar
Khalique committed
943

944
@onnx_test()
Khalique's avatar
Khalique committed
945
def const_of_shape_int64_test():
Khalique's avatar
Khalique committed
946
947
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
948
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
949
950
951
952
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
953
    shape_const = helper.make_node(
Khalique's avatar
Khalique committed
954
955
956
957
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
Khalique's avatar
Khalique committed
958
959
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
960
961
962
963
964

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
965

Khalique's avatar
Khalique committed
966
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
967

Khalique's avatar
Khalique committed
968

969
@onnx_test()
Khalique's avatar
Khalique committed
970
971
def const_of_shape_no_value_attr_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
972
973
974
975
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
976
977
978
979
980
981
982
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
983

Khalique's avatar
Khalique committed
984
985
986
987
988
989
    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
990
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
991

Khalique's avatar
Khalique committed
992

993
@onnx_test()
994
995
996
997
998
999
1000
1001
1002
1003
def conv_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


1004
@onnx_test()
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
def conv_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, 3, 3, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


1016
@onnx_test()
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
def conv_attr_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 strides=[1, 1],
                                 outputs=['2'])

    return ([node], [x, y], [out])


1030
@onnx_test()
Khalique's avatar
Khalique committed
1031
1032
1033
1034
1035
def conv_autopad_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 34, 34])

Khalique's avatar
Khalique committed
1036
1037
1038
1039
1040
1041
1042
1043
1044
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME',
                                 pads=[0, 0, 1, 1, 0, 0, 1, 1])

    return ([node], [x, y], [out])
Khalique's avatar
Khalique committed
1045
1046


1047
@onnx_test()
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
def conv_autopad_same_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 32, 32])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME')

    return ([node], [x, y], [out])


1063
@onnx_test()
Khalique's avatar
Khalique committed
1064
1065
1066
1067
1068
1069
def conv_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 28, 28])

Khalique's avatar
Khalique committed
1070
1071
1072
1073
1074
1075
1076
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])
Khalique's avatar
Khalique committed
1077
1078


1079
@onnx_test()
Khalique's avatar
Khalique committed
1080
1081
1082
1083
1084
1085
1086
1087
def conv_bn_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    k = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1])
    l = helper.make_tensor_value_info('6', TensorProto.FLOAT, [1])
Khalique's avatar
Khalique committed
1088
1089
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT,
                                        [1, 1, 14, 14])
Khalique's avatar
Khalique committed
1090

Khalique's avatar
Khalique committed
1091
1092
1093
1094
1095
1096
    node0 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['7'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1097

Khalique's avatar
Khalique committed
1098
1099
1100
1101
1102
    node1 = onnx.helper.make_node('BatchNormalization',
                                  inputs=['7', '3', '4', '5', '6'],
                                  outputs=['8'],
                                  epsilon=9.99999974737875e-06,
                                  momentum=0.899999976158142)
Khalique's avatar
Khalique committed
1103

Khalique's avatar
Khalique committed
1104
1105
1106
1107
1108
1109
1110
1111
1112
    node2 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
Khalique's avatar
Khalique committed
1113
1114


1115
@onnx_test()
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
def conv_dynamic_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [None, 1, 3, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


Charlie Lin's avatar
Charlie Lin committed
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
@onnx_test()
def conv_dynamic_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT,
                                        [None, 2, 28, 28])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])


1144
@onnx_test()
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
def conv_dynamic_img_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


1156
@onnx_test()
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
def conv_dynamic_weights_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [1, 3, None, None])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


1168
@onnx_test()
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
def conv_dynamic_img_and_weights_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [1, 3, None, None])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


1181
@onnx_test()
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
def conv_dynamic_batch_same_upper_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 auto_pad='SAME_UPPER')
    return ([node], [x, y], [out])


1194
@onnx_test()
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
def conv_dynamic_img_same_upper_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 auto_pad='SAME_UPPER')
    return ([node], [x, y], [out])


1209
@onnx_test()
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
def conv_dynamic_kernel_same_lower_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [1, 3, None, None])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 auto_pad='SAME_LOWER')
    return ([node], [x, y], [out])


1223
@onnx_test()
Khalique's avatar
Khalique committed
1224
1225
1226
1227
1228
1229
def conv_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 1, 14, 14])

Khalique's avatar
Khalique committed
1230
1231
1232
1233
1234
1235
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['3'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1236

Khalique's avatar
Khalique committed
1237
    node2 = onnx.helper.make_node('Relu', inputs=['3'], outputs=['4'])
Khalique's avatar
Khalique committed
1238

Khalique's avatar
Khalique committed
1239
1240
1241
1242
1243
1244
1245
1246
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['4'],
                                  outputs=['5'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3], [x, y, z], [out])
Khalique's avatar
Khalique committed
1247
1248


1249
@onnx_test()
Khalique's avatar
Khalique committed
1250
1251
1252
1253
1254
1255
1256
1257
def conv_relu_maxpool_x2_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 5, 5, 5])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT, [1, 1, 5, 5])

Khalique's avatar
Khalique committed
1258
1259
1260
1261
1262
1263
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['5'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1264

Khalique's avatar
Khalique committed
1265
    node2 = onnx.helper.make_node('Relu', inputs=['5'], outputs=['6'])
Khalique's avatar
Khalique committed
1266

Khalique's avatar
Khalique committed
1267
1268
1269
1270
1271
1272
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['6'],
                                  outputs=['7'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
1273

Khalique's avatar
Khalique committed
1274
1275
1276
1277
1278
1279
    node4 = onnx.helper.make_node('Conv',
                                  inputs=['7', '3', '4'],
                                  outputs=['8'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1280

Khalique's avatar
Khalique committed
1281
    node5 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Khalique's avatar
Khalique committed
1282

Khalique's avatar
Khalique committed
1283
1284
1285
1286
1287
1288
1289
1290
    node6 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3, node4, node5, node6], [x, y, z, m, n], [out])
Khalique's avatar
Khalique committed
1291
1292


1293
@onnx_test()
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
def convinteger_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.INT8, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.INT32, [1])
    out = helper.make_tensor_value_info('3', TensorProto.INT32, [1, 2, 28, 28])

    node = onnx.helper.make_node('ConvInteger',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])


1309
@onnx_test()
Khalique's avatar
Khalique committed
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
def cos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Cos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1320
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1321

Khalique's avatar
Khalique committed
1322

1323
@onnx_test()
Khalique's avatar
Khalique committed
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
def cosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Cosh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1334
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1335

Khalique's avatar
Khalique committed
1336

1337
@onnx_test()
kahmed10's avatar
kahmed10 committed
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
def deconv_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


1351
@onnx_test()
kahmed10's avatar
kahmed10 committed
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
def deconv_bias_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w', 'b'],
                                 outputs=['y'])

    return ([node], [x, w, b], [y])


1366
@onnx_test()
kahmed10's avatar
kahmed10 committed
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
def deconv_input_pads_strides_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[1, 1, 1, 1])

    return ([node], [x, w], [y])


1381
@onnx_test()
kahmed10's avatar
kahmed10 committed
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
def deconv_input_pads_asymm_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x, w], [y])


1396
@onnx_test()
kahmed10's avatar
kahmed10 committed
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
def deconv_input_pads_asymm_1d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[2],
                                 pads=[0, 1],
                                 dilations=[1])

    return ([node], [x, w], [y])


1412
@onnx_test()
kahmed10's avatar
kahmed10 committed
1413
def deconv_output_padding_test():
kahmed10's avatar
kahmed10 committed
1414
1415
1416
1417
1418
1419
1420
1421
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
kahmed10's avatar
kahmed10 committed
1422
                                 output_padding=[1, 1])
kahmed10's avatar
kahmed10 committed
1423
1424
1425
1426

    return ([node], [x, w], [y])


1427
@onnx_test()
kahmed10's avatar
kahmed10 committed
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
def deconv_output_padding_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_padding=[1, 1, 1])

    return ([node], [x, w], [y])


1442
@onnx_test()
kahmed10's avatar
kahmed10 committed
1443
def deconv_output_shape_test():
kahmed10's avatar
kahmed10 committed
1444
1445
1446
1447
1448
1449
1450
1451
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
kahmed10's avatar
kahmed10 committed
1452
1453
1454
1455
1456
                                 output_shape=[10, 8])

    return ([node], [x, w], [y])


1457
@onnx_test()
kahmed10's avatar
kahmed10 committed
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
def deconv_output_shape_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_shape=[10, 8, 8])
kahmed10's avatar
kahmed10 committed
1468
1469
1470
1471

    return ([node], [x, w], [y])


1472
@onnx_test()
kahmed10's avatar
kahmed10 committed
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
def deconv_stride_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 3])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2])

    return ([node], [x, w], [y])


1486
@onnx_test()
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
def depthtospace_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='DCR')

    return ([node], [x], [y])


1501
@onnx_test()
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
def depthtospace_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 4, 6])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='DCR')

    return ([node], [x], [y])


1516
@onnx_test()
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
def depthtospace_crd_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='CRD')

    return ([node], [x], [y])


1531
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
def spacetodepth_test():

    x = helper.make_tensor_value_info('x', TensorProto.float, [2, 2, 10, 10])
    y = helper.make_tensor_value_info('y', TensorProto.float, [2, 8, 5, 5])

    node = onnx.helper.make_node('spacetodepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


1545
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
def spacetodepth_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


1559
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
def spacetodepth_invalid_blocksize_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=0.3)

    return ([node], [x], [y])


1573
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
def spacetodepth_nondivisibility_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 2])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


1587
@onnx_test()
1588
def dequantizelinear_test():
turneram's avatar
turneram committed
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


1602
@onnx_test()
turneram's avatar
turneram committed
1603
def dequantizelinear_zero_point_test():
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_dequantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [1, 1, 5, 1])

    node = onnx.helper.make_node('DequantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)

    return ([node], [arg0, arg1, arg2], [arg_out])


1633
@onnx_test()
1634
1635
1636
1637
def dequantizelinear_axis_test():
    return make_dequantizelinear_axis_graph(2)


1638
@onnx_test()
1639
1640
1641
1642
def dequantizelinear_neg_axis_test():
    return make_dequantizelinear_axis_graph(-2)


1643
@onnx_test()
Khalique's avatar
Khalique committed
1644
def dropout_test():
Khalique's avatar
Khalique committed
1645
1646
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
Khalique's avatar
Khalique committed
1647

Khalique's avatar
Khalique committed
1648
1649
1650
1651
1652
1653
1654
    node = onnx.helper.make_node(
        'Dropout',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1655
1656


1657
@onnx_test()
Khalique's avatar
Khalique committed
1658
1659
1660
1661
def elu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
1662
1663
1664
1665
    node = onnx.helper.make_node('Elu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
1666

Khalique's avatar
Khalique committed
1667
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1668

Khalique's avatar
Khalique committed
1669

1670
@onnx_test()
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
def embedding_bag_test():

    index_val = np.array([1, 0, 2])
    offset_val = np.array([0])

    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))

    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)

    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.reshape(()).shape,
                                       vals=offset_val.astype(np.int32))

    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [4, 2])

    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [1, 2])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [1, 2])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [1, 2])

    node1 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y1'],
                                  mode=0,
                                  operator='embedding_bag')

    node2 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y2'],
                                  mode=1,
                                  operator='embedding_bag')

    node3 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y3'],
                                  mode=2,
                                  operator='embedding_bag')

    return ([index, offset, node1, node2, node3], [weight], [y1, y2, y3])


1723
@onnx_test()
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
def embedding_bag_offset_test():

    index_val = np.array([1, 0])
    offset_val = np.array([0, 1])

    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))

    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)

    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.shape,
                                       vals=offset_val.astype(np.int32))

    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [2, 3])

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('ATen',
                                 inputs=['weight', 'index', 'offset'],
                                 outputs=['y'],
                                 mode=0,
                                 operator='embedding_bag')

    return ([index, offset, node], [weight], [y])


1762
@onnx_test()
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
def equal_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Equal',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


1782
@onnx_test()
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
def equal_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Equal',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


1800
@onnx_test()
Khalique's avatar
Khalique committed
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
def erf_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Erf',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1811
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1812

Khalique's avatar
Khalique committed
1813

1814
@onnx_test()
Khalique's avatar
Khalique committed
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
def exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Exp',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1825
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1826

Khalique's avatar
Khalique committed
1827

1828
@onnx_test()
Khalique's avatar
Khalique committed
1829
1830
def expand_test():
    shape_val = np.array([2, 3, 4, 5]).astype(np.int64)
Khalique's avatar
Khalique committed
1831
1832
1833
1834
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
1835
1836
1837
1838
1839
1840
1841
1842
1843
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
1844
1845
1846
1847
1848
1849
    node = onnx.helper.make_node('Expand',
                                 inputs=['x', 'shape'],
                                 outputs=['y'])

    return ([shape_const, node], [x], [y])

Khalique's avatar
Khalique committed
1850

1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
@onnx_test(True)
def external_constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])

    tensor = from_array(x)
    tensor.name = 'const_tensor'

    node = onnx.helper.make_node('Constant',
                                 inputs=[],
                                 outputs=['0'],
                                 value=tensor)

    return ([node], [], [y])


@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
def eyelike_default_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


1880
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
def eyelike_double_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.DOUBLE, [6, 15])
    T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [6, 15])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


1893
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
def eyelike_half_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT16, [8, 8])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT16, [8, 8])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


1906
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
1907
1908
1909
1910
1911
1912
1913
def eyelike_k_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
    return ([node], [T1], [T2])


1914
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
def eyelike_k_outofbounds_neg_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [2, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [2, 4])
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 k=-2)
    return ([node], [T1], [T2])


1925
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
1926
1927
1928
1929
1930
1931
1932
def eyelike_k_outofbounds_pos_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=4)
    return ([node], [T1], [T2])


1933
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
def eyelike_not_rank2_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4, 2])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


1945
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
1946
1947
1948
1949
1950
1951
1952
def eyelike_verify_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
    return ([node], [T1], [T2])


1953
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
def eyelike_verify_negk_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 k=-2)
    return ([node], [T1], [T2])


1964
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
def eyelike_set_dtype_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [3, 4])
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 dtype=TensorProto.DOUBLE)
    return ([node], [T1], [T2])


1975
@onnx_test()
Khalique's avatar
Khalique committed
1976
1977
def flatten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1978
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
Khalique's avatar
Khalique committed
1979
1980
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

Khalique's avatar
Khalique committed
1981
1982
1983
1984
    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
1985

Khalique's avatar
Khalique committed
1986
1987
1988
    node2 = onnx.helper.make_node('Flatten', inputs=['0'], outputs=['3'])

    return ([node, node2], [x], [y, y2])
Khalique's avatar
Khalique committed
1989

kahmed10's avatar
kahmed10 committed
1990

1991
@onnx_test()
Khalique's avatar
Khalique committed
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
def flatten_nonstd_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 5, 4])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

    trans = helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['tx'],
        perm=[0, 1, 3, 2],
    )

    node = onnx.helper.make_node('Flatten',
                                 inputs=['tx'],
                                 axis=2,
                                 outputs=['2'])

    node2 = onnx.helper.make_node('Flatten', inputs=['tx'], outputs=['3'])

    return ([trans, node, node2], [x], [y, y2])


2014
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
def flatten_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 4, 5])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [None, 20])

    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])

    return ([node], [x], [y])


2027
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
def floor_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Floor',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2039

kahmed10's avatar
kahmed10 committed
2040

2041
@onnx_test()
Khalique's avatar
Khalique committed
2042
2043
def gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
Khalique's avatar
Khalique committed
2044
2045
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2046
2047
2048
2049
2050
2051
2052
2053
2054
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
2055
2056
    return ([node], [x, i], [y])

Khalique's avatar
Khalique committed
2057

Brian Pickrell's avatar
Brian Pickrell committed
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
@onnx_test()
def gather_scalar_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


@onnx_test()
def gather_dyn_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT,
                                      [None, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [None, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


2092
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
def gather_elements_axis0_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=0,
    )

    return ([node], [x, i], [y])


2108
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
def gather_elements_axis1_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


2124
@onnx_test()
turneram's avatar
turneram committed
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
def gathernd_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2])
    i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2])

    node = onnx.helper.make_node('GatherND',
                                 inputs=['data', 'indices'],
                                 outputs=['y'])

    return ([node], [x, i], [y])


Brian Pickrell's avatar
Brian Pickrell committed
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
@onnx_test()
def gathernd_dyn_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
    i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2])

    node = onnx.helper.make_node('GatherND',
                                 inputs=['data', 'indices'],
                                 outputs=['y'])

    return ([node], [x, i], [y])


2150
@onnx_test()
turneram's avatar
turneram committed
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
def gathernd_batch_dims_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2])

    node = onnx.helper.make_node(
        'GatherND',
        inputs=['data', 'indices'],
        outputs=['y'],
        batch_dims=1,
    )

    return ([node], [x, i], [y])


2166
@onnx_test()
Khalique's avatar
Khalique committed
2167
def gemm_test():
Charlie Lin's avatar
Charlie Lin committed
2168
2169
2170
2171
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [8, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [6, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [6, 7])
Khalique's avatar
Khalique committed
2172

Khalique's avatar
Khalique committed
2173
    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [A, B, C], [Y])


@onnx_test()
def gemm_no_C_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [5, 7])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [11, 5])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [7, 11])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Khalique's avatar
Khalique committed
2193
2194
2195
2196
2197
                                 alpha=2.0,
                                 beta=2.0,
                                 transA=1,
                                 transB=1)

Charlie Lin's avatar
Charlie Lin committed
2198
    return ([node], [A, B, C], [Y])
Khalique's avatar
Khalique committed
2199
2200


2201
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2202
2203
2204
2205
2206
def gemm_brcst_C_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [5, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [5, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [6, 1])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [6, 7])
Khalique's avatar
Khalique committed
2207

Khalique's avatar
Khalique committed
2208
    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2209
2210
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Khalique's avatar
Khalique committed
2211
2212
2213
2214
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

Charlie Lin's avatar
Charlie Lin committed
2215
    return ([node], [A, B, C], [Y])
Khalique's avatar
Khalique committed
2216
2217


2218
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2219
2220
2221
2222
2223
def gemm_half_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT16, [8, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT16, [8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT16, [6, 1])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT16, [6, 7])
Khalique's avatar
Khalique committed
2224

Khalique's avatar
Khalique committed
2225
    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2226
2227
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Khalique's avatar
Khalique committed
2228
2229
2230
2231
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

Charlie Lin's avatar
Charlie Lin committed
2232
    return ([node], [A, B, C], [Y])
Khalique's avatar
Khalique committed
2233
2234


2235
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2236
2237
2238
2239
def gemm_dyn_inner_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [None, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [None, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [6, 7])
Shucai Xiao's avatar
Shucai Xiao committed
2240
2241

    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
                                 inputs=['A', 'B'],
                                 outputs=['Y'],
                                 alpha=0.5,
                                 transA=1)

    return ([node], [A, B], [Y])


@onnx_test()
def gemm_dyn_outer_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [5, None])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [11, 5])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [None, 11])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B'],
                                 outputs=['Y'],
                                 alpha=2.0,
                                 transA=1,
                                 transB=1)

    return ([node], [A, B], [Y])


@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2267
def gemm_dyn_bias_test():
Charlie Lin's avatar
Charlie Lin committed
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [8, None])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [1, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [None, 7])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
                                 alpha=1.0,
                                 beta=1.0,
                                 transA=1)

    return ([node], [A, B, C], [Y])


@onnx_test()
def gemm_rank_error():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [4, 1, 8, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [4, 1, 8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [6, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [4, 1, 6, 7])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Shucai Xiao's avatar
Shucai Xiao committed
2293
2294
2295
2296
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

Charlie Lin's avatar
Charlie Lin committed
2297
    return ([node], [A, B, C], [Y])
Shucai Xiao's avatar
Shucai Xiao committed
2298
2299


2300
@onnx_test()
Khalique's avatar
Khalique committed
2301
def globalavgpool_test():
Khalique's avatar
Khalique committed
2302
2303
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
2304
2305
2306
2307
2308
2309
2310

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
2311
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2312

Khalique's avatar
Khalique committed
2313

2314
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
def globalavgpool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2329
@onnx_test()
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
def globallppool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalLpPool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2343
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
def globallppool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalLpPool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2358
@onnx_test()
Khalique's avatar
Khalique committed
2359
def globalmaxpool_test():
Khalique's avatar
Khalique committed
2360
2361
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
2362
2363
2364
2365
2366
2367
2368

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
2369
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2370

Khalique's avatar
Khalique committed
2371

2372
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
def globalmaxpool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2387
@onnx_test()
Khalique's avatar
Khalique committed
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
def greater_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Greater',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


2407
@onnx_test()
Khalique's avatar
Khalique committed
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
def greater_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Greater',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


2425
@onnx_test()
turneram's avatar
turneram committed
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
def greaterorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'GreaterOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


2441
@onnx_test()
Khalique's avatar
Khalique committed
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
def group_conv_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1, 3, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 4, 14, 14])

    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        group=4,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
2454
2455
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
2456

2457
@onnx_test()
turneram's avatar
turneram committed
2458
2459
2460
2461
2462
2463
2464
2465
2466
def hardsigmoid_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2467
@onnx_test()
turneram's avatar
turneram committed
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
def hardsigmoid_double_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.3,
                                 beta=0.7)

    return ([node], [x], [y])


2481
@onnx_test()
turneram's avatar
turneram committed
2482
2483
2484
2485
2486
2487
2488
2489
2490
def hardsigmoid_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2491
@onnx_test()
turneram's avatar
turneram committed
2492
2493
2494
2495
2496
2497
2498
2499
2500
def hardsigmoid_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2501
@onnx_test()
2502
2503
2504
2505
2506
2507
2508
2509
2510
def hardswish_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node('HardSwish', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2511
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2512
2513
2514
2515
def if_else_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond_tensor = onnx.helper.make_tensor_value_info("cond",
                                                     onnx.TensorProto.BOOL,
                                                     [1])
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y, cond_tensor], [res], [xt_tensor, yt_tensor])


@onnx_test()
def if_else_test_inlined():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond = np.array([0]).astype(np.bool)
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
@onnx_test()
def if_then_else_multi_output_shapes_inlined_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT,
                                           [2, 3, 1])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3, 1])
    then_out2 = onnx.helper.make_tensor_value_info('then_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3, 1])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    else_out2 = onnx.helper.make_tensor_value_info('else_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3])

    xt = np.ones((2, 3, 1)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    then_add_node2 = onnx.helper.make_node('Add',
                                           inputs=['x', 'x'],
                                           outputs=['then_out2'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    else_sub_node = onnx.helper.make_node('Sub',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out2'])

    then_body = onnx.helper.make_graph([then_add_node, then_add_node2],
                                       'then_body', [], [then_out, then_out2])

    else_body = onnx.helper.make_graph([else_mul_node, else_sub_node],
                                       'else_body', [], [else_out, else_out2])

    cond = np.array([1]).astype(np.bool)
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))

    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])
    res2 = onnx.helper.make_tensor_value_info('res2', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res1', 'res2'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res1, res2], [cond_tensor, xt_tensor, yt_tensor])


@onnx_test()
def if_then_else_multi_output_shapes_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT,
                                           [2, 3, 1])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT,
                                           [2, 3, 1])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3, 1])
    then_out2 = onnx.helper.make_tensor_value_info('then_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3, 1])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3, 1])

    else_out2 = onnx.helper.make_tensor_value_info('else_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3, 1])

    xt = np.ones((2, 3, 1)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3, 1).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    then_add_node2 = onnx.helper.make_node('Add',
                                           inputs=['x', 'x'],
                                           outputs=['then_out2'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    else_sub_node = onnx.helper.make_node('Sub',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out2'])

    then_body = onnx.helper.make_graph([then_add_node, then_add_node2],
                                       'then_body', [], [then_out, then_out2])

    else_body = onnx.helper.make_graph([else_mul_node, else_sub_node],
                                       'else_body', [], [else_out, else_out2])

    cond_tensor = onnx.helper.make_tensor_value_info("cond",
                                                     onnx.TensorProto.BOOL,
                                                     [1])

    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])
    res2 = onnx.helper.make_tensor_value_info('res2', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res1', 'res2'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y, cond_tensor], [res1, res2], [xt_tensor, yt_tensor])


2760
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2761
2762
2763
2764
2765
2766
2767
2768
def if_literal_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT, [5])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT, [5])

    x = np.array([1, 2, 3, 4, 5]).astype(np.float32)
    y = np.array([5, 4, 3, 2, 1]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
2769
    z = np.array([]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['then_out'],
        value=onnx.numpy_helper.from_array(x))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['else_out'],
        value=onnx.numpy_helper.from_array(y))

Shucai Xiao's avatar
Shucai Xiao committed
2783
2784
2785
2786
2787
    empty_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['empty_out'],
        value=onnx.numpy_helper.from_array(z))
Shucai Xiao's avatar
Shucai Xiao committed
2788

Shucai Xiao's avatar
Shucai Xiao committed
2789
2790
2791
2792
2793
    then_body = onnx.helper.make_graph([then_const_node, empty_const_node],
                                       'then_body', [], [then_out])

    else_body = onnx.helper.make_graph([else_const_node, empty_const_node],
                                       'else_body', [], [else_out])
Shucai Xiao's avatar
Shucai Xiao committed
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input], [ret])


2808
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
def if_param_excp_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 4])

    yt = np.random.randn(2, 4).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret])


2860
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
def if_param_excp1_test():
    then_out = onnx.helper.make_tensor_value_info('sub_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])

    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['sub_out'])

    sub_body = onnx.helper.make_graph([then_add_node], 'sub_body', [],
                                      [then_out], [xt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [2])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=sub_body,
                                 else_branch=sub_body)

    return ([node], [cond_input, x], [ret])


2895
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
def if_param_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    yt = np.random.randn(2, 3).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret])


2947
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
def if_pl_test():
    out_x = onnx.helper.make_tensor_value_info('out_x', onnx.TensorProto.FLOAT,
                                               [2, 3])
    out_l_x = onnx.helper.make_tensor_value_info('out_l_x',
                                                 onnx.TensorProto.FLOAT,
                                                 [2, 3])
    out_y = onnx.helper.make_tensor_value_info('out_y', onnx.TensorProto.FLOAT,
                                               [3, 3])
    out_l_y = onnx.helper.make_tensor_value_info('out_l_y',
                                                 onnx.TensorProto.FLOAT,
                                                 [3, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 3])

    xt = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
    yt = np.array([[8, 7, 6], [5, 4, 3], [2, 1, 0]]).astype(np.float32)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['out_x'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['out_y'])

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_y'],
        value=onnx.numpy_helper.from_array(yt))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_x'],
        value=onnx.numpy_helper.from_array(xt))

    then_body = onnx.helper.make_graph([then_add_node, then_const_node],
                                       'then_body', [], [out_x, out_l_y])

    else_body = onnx.helper.make_graph([else_mul_node, else_const_node],
                                       'else_body', [], [out_l_x, out_y])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret], [xt_tensor, yt_tensor])


3015
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
def if_then_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond_tensor = onnx.helper.make_tensor_value_info("cond",
                                                     onnx.TensorProto.BOOL,
                                                     [1])

    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y, cond_tensor], [res], [xt_tensor, yt_tensor])


@onnx_test()
def if_then_test_inlined():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond = np.array([1]).astype(np.bool)
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


3122
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
def if_tuple_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [1, 4])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 4])
    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])

    then_out0 = onnx.helper.make_tensor_value_info('then_out0',
                                                   onnx.TensorProto.FLOAT,
                                                   [1, 4])
    then_out1 = onnx.helper.make_tensor_value_info('then_out1',
                                                   onnx.TensorProto.FLOAT,
                                                   [3, 4])
    else_out0 = onnx.helper.make_tensor_value_info('else_out0',
                                                   onnx.TensorProto.FLOAT,
                                                   [1, 4])
    else_out1 = onnx.helper.make_tensor_value_info('else_out1',
                                                   onnx.TensorProto.FLOAT,
                                                   [3, 4])

    one = np.ones([1]).astype(np.float)
    one_tensor = helper.make_tensor(name='one',
                                    data_type=TensorProto.FLOAT,
                                    dims=one.shape,
                                    vals=one.flatten().astype(np.float32))

    two = np.array([2]).astype(np.float)
    two_tensor = helper.make_tensor(name='two',
                                    data_type=TensorProto.FLOAT,
                                    dims=two.shape,
                                    vals=two.flatten().astype(np.float32))

    three = np.array([3]).astype(np.float)
    three_tensor = helper.make_tensor(name='three',
                                      data_type=TensorProto.FLOAT,
                                      dims=three.shape,
                                      vals=three.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'one'],
                                          outputs=['then_out0'])
    then_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'two'],
                                          outputs=['then_out1'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['x', 'three'],
                                          outputs=['else_out0'])
    else_add_node = onnx.helper.make_node('Add',
                                          inputs=['y', 'three'],
                                          outputs=['else_out1'])

    then_body = onnx.helper.make_graph([then_add_node, then_mul_node],
                                       'then_body', [], [then_out0, then_out1])

    else_body = onnx.helper.make_graph([else_mul_node, else_add_node],
                                       'else_body', [], [else_out0, else_out1])

    res0 = onnx.helper.make_tensor_value_info('res0', TensorProto.FLOAT, [])
    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res0', 'res1'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x,
                     y], [res0, res1], [one_tensor, two_tensor, three_tensor])


3193
@onnx_test()
Khalique's avatar
Khalique committed
3194
def imagescaler_test():
Khalique's avatar
Khalique committed
3195
3196
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 16, 16])
Khalique's avatar
Khalique committed
3197

Khalique's avatar
Khalique committed
3198
3199
3200
3201
3202
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Khalique's avatar
Khalique committed
3203

Khalique's avatar
Khalique committed
3204
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3205

Khalique's avatar
Khalique committed
3206

3207
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
def imagescaler_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 3, 16, 16])

    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)

    return ([node], [x], [y])


3221
@onnx_test()
Khalique's avatar
Khalique committed
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
def implicit_add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
3233
3234
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
3235

3236
@onnx_test()
Khalique's avatar
Khalique committed
3237
3238
3239
def implicit_pow_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
Khalique's avatar
Khalique committed
3240
3241
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3242
3243
3244
3245
3246
3247
3248

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
3249
3250
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
3251

3252
@onnx_test()
Khalique's avatar
Khalique committed
3253
def implicit_sub_bcast_test():
Shucai Xiao's avatar
Shucai Xiao committed
3254
3255
3256
    arg0 = helper.make_tensor_value_info('0', TensorProto.UINT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.UINT64, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.UINT64,
Khalique's avatar
Khalique committed
3257
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3258
3259
3260
3261
3262
3263
3264

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
3265
3266
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
3267

3268
@onnx_test()
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
def initializer_not_an_input():
    values = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
    w = helper.make_tensor(name='w',
                           data_type=TensorProto.FLOAT,
                           dims=values.shape,
                           vals=values.flatten().astype(np.float))

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 4])

    node = onnx.helper.make_node(
        'Gemm',
        inputs=['x', 'w'],
        outputs=['y'],
    )

    return ([node], [x], [y], [w])


3288
@onnx_test()
kahmed10's avatar
kahmed10 committed
3289
3290
3291
3292
3293
def instance_norm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])
3294
3295
3296
3297
3298
3299
3300
3301

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3302
@onnx_test()
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
def instance_norm_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT16, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3316
@onnx_test()
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
def instance_norm_type_mismatch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3330
@onnx_test()
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
def instance_norm_invalid_type_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT32, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3344
@onnx_test()
3345
3346
3347
3348
3349
def instance_norm_nonbroadcastable_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [4])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])
kahmed10's avatar
kahmed10 committed
3350
3351
3352
3353
3354
3355
3356
3357

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3358
@onnx_test()
kahmed10's avatar
kahmed10 committed
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
def instance_norm_val_test():
    x = np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
                   [[0, 1, 2], [3, 4, 5], [6, 7, 8]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
3383
3384
3385
3386
3387
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


3388
@onnx_test()
kahmed10's avatar
kahmed10 committed
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
def instance_norm_val_3d_test():
    x = np.array([[[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
                   [[[0, 1], [2, 3]], [[4, 5], [6, 7]]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 2, 2, 2])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
3413
3414
3415
3416
3417
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


3418
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
def isnan_float_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'IsNaN',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


3431
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
def isnan_half_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT16, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT16, [2, 3])

    node = onnx.helper.make_node(
        'IsNaN',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


3444
@onnx_test()
kahmed10's avatar
kahmed10 committed
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
def layernorm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [5])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [5])
    axes = [2]
    pow_2 = np.array([[[2, 2, 2, 2, 2]]])
    epsilon = np.array([1e-12])

    pow_tensor = helper.make_tensor(name='pow',
                                    data_type=TensorProto.FLOAT,
                                    dims=pow_2.shape,
                                    vals=pow_2.flatten().astype(np.float))

    epsilon_tensor = helper.make_tensor(name='epsilon',
                                        data_type=TensorProto.FLOAT,
                                        dims=epsilon.shape,
                                        vals=epsilon.flatten().astype(
                                            np.float))

    mean = onnx.helper.make_node('ReduceMean',
                                 inputs=['0'],
                                 outputs=['mean_out'],
                                 axes=axes)

    sub_mean = onnx.helper.make_node('Sub',
                                     inputs=['0', 'mean_out'],
                                     outputs=['sub_out'])

    sub_pow = onnx.helper.make_node('Pow',
                                    inputs=['sub_out', 'pow'],
                                    outputs=['pow_out'])

    var = onnx.helper.make_node('ReduceMean',
                                inputs=['pow_out'],
                                outputs=['var_out'],
                                axes=axes)

    add = onnx.helper.make_node('Add',
                                inputs=['var_out', 'epsilon'],
                                outputs=['add_out'])

    sqrt = onnx.helper.make_node('Sqrt',
                                 inputs=['add_out'],
                                 outputs=['sqrt_out'])

    div = onnx.helper.make_node('Div',
                                inputs=['sub_out', 'sqrt_out'],
                                outputs=['div_out'])

    mul = onnx.helper.make_node('Mul',
                                inputs=['scale', 'div_out'],
                                outputs=['mul_out'])

    bias_add = onnx.helper.make_node('Add',
                                     inputs=['mul_out', 'bias'],
                                     outputs=['1'])

    return ([mean, sub_mean, sub_pow, var, add, sqrt, div, mul,
             bias_add], [x, scale, bias], [y], [pow_tensor, epsilon_tensor])


3507
@onnx_test()
Khalique's avatar
Khalique committed
3508
3509
3510
3511
def leaky_relu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
3512
3513
3514
3515
    node = onnx.helper.make_node('LeakyRelu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
3516

Khalique's avatar
Khalique committed
3517
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3518

Khalique's avatar
Khalique committed
3519

3520
@onnx_test()
Khalique's avatar
Khalique committed
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
def less_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Less',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


3540
@onnx_test()
Khalique's avatar
Khalique committed
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
def less_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Less',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


3558
@onnx_test()
Khalique's avatar
Khalique committed
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
def lessorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'LessOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


3574
@onnx_test()
Khalique's avatar
Khalique committed
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
def log_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Log',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3585
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3586

Khalique's avatar
Khalique committed
3587

3588
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
def logical_and_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('And', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


3599
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
def logical_or_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [2, 3, 4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Or', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


3610
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
def logical_xor_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Xor', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


3621
@onnx_test()
Khalique's avatar
Khalique committed
3622
3623
3624
3625
def logsoftmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

Khalique's avatar
Khalique committed
3626
3627
3628
3629
    node = onnx.helper.make_node('LogSoftmax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=1)
Khalique's avatar
Khalique committed
3630

Khalique's avatar
Khalique committed
3631
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3632

Khalique's avatar
Khalique committed
3633

3634
@onnx_test()
3635
3636
def logsoftmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 9])
3637
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
3638
3639
3640
3641
3642
3643
3644
3645

    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])

Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
3646
3647
3648
3649
    node1 = onnx.helper.make_node('LogSoftmax',
                                  inputs=['1'],
                                  outputs=['2'],
                                  axis=-1)
3650

3651
    return ([node0, node1], [x], [y])
3652
3653


3654
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
def loop_default_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, []),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, []),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, []),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      []),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["", "", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [a, b], [b_loop, uout])


3691
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
def loop_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, [1]),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [1])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      [1]),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["max_trip_count", "keep_going_cond", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [1])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    cond = helper.make_tensor_value_info('keep_going_cond', TensorProto.BOOL,
                                         [1])
    iter = helper.make_tensor_value_info('max_trip_count', TensorProto.INT64,
                                         [1])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [1])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [iter, cond, a, b], [b_loop, uout])


3732
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
def lpnormalization_axis_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2)
    return ([node], [x], [y])


3744
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
def lpnormalization_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'LpNormalization',
        inputs=['x'],
        outputs=['y'],
        axis=0,
    )
    return ([node], [x], [y])


3758
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
def lpnormalization_l1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'LpNormalization',
        inputs=['x'],
        outputs=['y'],
        p=1,
    )
    return ([node], [x], [y])


3772
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
def lpnormalization_l2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 p=2)
    return ([node], [x], [y])


3784
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
def lpnormalization_p_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 p=3)
    return ([node], [x], [y])


3796
@onnx_test()
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
def lppool_l1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 3])

    node = onnx.helper.make_node('LpPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[3],
                                 p=1)
    return ([node], [x], [y])


3809
@onnx_test()
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
def lppool_l2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 3])

    node = onnx.helper.make_node('LpPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[3],
                                 p=2)
    return ([node], [x], [y])


3822
@onnx_test()
Khalique's avatar
Khalique committed
3823
3824
3825
3826
def lrn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 28, 24, 24])

Khalique's avatar
Khalique committed
3827
3828
3829
3830
3831
3832
3833
    node = onnx.helper.make_node('LRN',
                                 inputs=['0'],
                                 size=5,
                                 alpha=0.0001,
                                 beta=0.75,
                                 bias=1.0,
                                 outputs=['1'])
Khalique's avatar
Khalique committed
3834

Khalique's avatar
Khalique committed
3835
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3836

Khalique's avatar
Khalique committed
3837

3838
@onnx_test()
Khalique's avatar
Khalique committed
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
def matmul_bmbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 2, 1, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 2, 3, 6, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3850
3851
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
3852

3853
@onnx_test()
Khalique's avatar
Khalique committed
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
def matmul_bmv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3865
3866
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
3867

3868
@onnx_test()
Khalique's avatar
Khalique committed
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
def matmul_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3880
3881
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
3882

3883
@onnx_test()
Khalique's avatar
Khalique committed
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
def matmul_vbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3895
3896
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
3897

3898
@onnx_test()
Khalique's avatar
Khalique committed
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
def matmul_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3910
3911
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
3912

3913
@onnx_test()
Khalique's avatar
Khalique committed
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
def matmul_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3925
3926
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
3927

Charlie Lin's avatar
Charlie Lin committed
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
@onnx_test()
def matmul_dyn_mm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, None])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, None])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_broadcast_error():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, None])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


4003
@onnx_test()
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
def matmulinteger_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [3, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [3, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [3, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


Charlie Lin's avatar
Charlie Lin committed
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
@onnx_test()
def matmulinteger_dyn_error():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [None, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [None, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [None, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


4033
@onnx_test()
Khalique's avatar
Khalique committed
4034
4035
4036
4037
def max_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
4038
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
4039
4040
4041
4042
4043
4044
4045

    node = onnx.helper.make_node(
        'Max',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
4046
4047
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
4048

4049
@onnx_test()
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
def maxpool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


4065
@onnx_test()
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
def maxpool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


4079
@onnx_test()
turneram's avatar
turneram committed
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
def mean_broadcast_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                           [1, 2, 3, 4])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [4])
    data_3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    data_4 = helper.make_tensor_value_info('4', TensorProto.FLOAT, [2, 3, 1])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT,
                                         [1, 2, 3, 4])

    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2", "3", "4"],
                                 outputs=["mean"])

    return ([node], [data_0, data_1, data_2, data_3, data_4], [mean])


4098
@onnx_test()
turneram's avatar
turneram committed
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
def mean_fp16_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 2, 3])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 2, 3])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1, 2, 3])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT16,
                                         [1, 2, 3])

    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2"],
                                 outputs=["mean"])

    return ([node], [data_0, data_1, data_2], [mean])


4114
@onnx_test()
turneram's avatar
turneram committed
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
def mean_invalid_broadcast_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2, 3])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 2, 4])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])

    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2"],
                                 outputs=["mean"])

    return ([node], [data_0, data_1, data_2], [mean])


4129
@onnx_test()
turneram's avatar
turneram committed
4130
4131
4132
4133
4134
4135
4136
4137
4138
def mean_single_input_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])

    node = onnx.helper.make_node("Mean", inputs=["0"], outputs=["mean"])

    return ([node], [data_0], [mean])


4139
@onnx_test()
turneram's avatar
turneram committed
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
def mean_test():
    data = [
        helper.make_tensor_value_info(str(i), TensorProto.DOUBLE, [2, 2, 2])
        for i in range(10)
    ]
    data_names = [str(i) for i in range(10)]
    mean = helper.make_tensor_value_info('mean', TensorProto.DOUBLE, [2, 2, 2])

    node = onnx.helper.make_node("Mean", inputs=data_names, outputs=["mean"])

    return ([node], data, [mean])


4153
@onnx_test()
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
def mean_integral_test():
    data = [
        helper.make_tensor_value_info(str(i), TensorProto.INT32, [2, 2, 2])
        for i in range(10)
    ]
    data_names = [str(i) for i in range(10)]
    mean = helper.make_tensor_value_info('mean', TensorProto.INT32, [2, 2, 2])

    node = onnx.helper.make_node("Mean", inputs=data_names, outputs=["mean"])

    return ([node], data, [mean])


4167
@onnx_test()
Khalique's avatar
Khalique committed
4168
4169
4170
4171
def min_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
4172
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
4173
4174
4175
4176
4177
4178
4179

    node = onnx.helper.make_node(
        'Min',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
4180
4181
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
4182

4183
@onnx_test()
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
def mod_test():
    a = helper.make_tensor_value_info('0', TensorProto.INT32, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.INT32, [3, 3, 3])

    node = onnx.helper.make_node('Mod', inputs=['0', '1'], outputs=['2'])

    return ([node], [a, b], [y])


4194
@onnx_test()
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
def mod_test_half():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [3, 3, 3])

    node = onnx.helper.make_node('Mod', inputs=['0', '1'], outputs=['2'])

    return ([node], [a, b], [y])


4205
@onnx_test()
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
def mod_test_different_dtypes():
    a = helper.make_tensor_value_info('0', TensorProto.INT16, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.INT32, [3, 3, 3])

    node = onnx.helper.make_node(
        'Mod',
        inputs=['0', '1'],
        outputs=['2'],
    )

    return ([node], [a, b], [y])


4220
@onnx_test()
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
def mod_test_fmod():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 3, 3])

    node = onnx.helper.make_node(
        'Mod',
        inputs=['0', '1'],
        outputs=['2'],
        fmod=1  #fmod flag = 1
    )

    return ([node], [a, b], [y])


4236
@onnx_test()
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
def mod_test_fmod_half():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [3, 3, 3])

    node = onnx.helper.make_node('Mod',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 fmod=1)

    return ([node], [a, b], [y])


4250
@onnx_test()
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
def mod_test_fmod_different_dtypes():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 3, 3])

    node = onnx.helper.make_node(
        'Mod',
        inputs=['0', '1'],
        outputs=['2'],
        fmod=1  #fmod flag = 1
    )

    return ([node], [a, b], [y])


4266
@onnx_test()
turneram's avatar
turneram committed
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
def multinomial_test():
    sample_size = 10
    seed = 0.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 seed=seed,
                                 outputs=['output'])

    return ([node], [input], [output])


4283
@onnx_test()
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
def multinomial_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])

    return ([node], [input], [output])


4298
@onnx_test()
turneram's avatar
turneram committed
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
def multinomial_dtype_error_test():
    sample_size = 10
    dtype = 0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 dtype=dtype,
                                 outputs=['output'])

    return ([node], [input], [output])


4315
@onnx_test()
turneram's avatar
turneram committed
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
def multinomial_int64_test():
    sample_size = 10
    dtype = 7
    seed = 1.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 dtype=dtype,
                                 seed=seed,
                                 outputs=['output'])

    return ([node], [input], [output])


4334
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4335
def neg_test():
Shucai Xiao's avatar
Shucai Xiao committed
4336
4337
    x = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
4338
4339
4340
4341
4342
4343

    node = onnx.helper.make_node('Neg', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


4344
@onnx_test()
4345
4346
4347
4348
4349
4350
4351
4352
4353
def neg_dynamic_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT64, [None, 3])
    y = helper.make_tensor_value_info('1', TensorProto.INT64, [None, 3])

    node = onnx.helper.make_node('Neg', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


4354
@onnx_test()
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
def nms_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT, [1, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
Charlie Lin's avatar
Charlie Lin committed
4365
                                        [None, 3])
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 center_point_box=1)

    return ([node], [b, s, mo, iou, st], [out])


4379
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
def nms_use_dyn_output_false_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT, [1, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 use_dyn_output=0)

    return ([node], [b, s, mo, iou, st], [out])


4404
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
def nms_dynamic_batch_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [None, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
                                      [None, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 center_point_box=1,
                                 use_dyn_output=1)

    return ([node], [b, s, mo, iou, st], [out])


4431
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
def nms_dynamic_boxes_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, None, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
                                      [1, 1, None])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'])

    return ([node], [b, s, mo, iou, st], [out])


4456
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
def nms_dynamic_classes_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
                                      [1, None, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'])

    return ([node], [b, s, mo, iou, st], [out])


4481
@onnx_test()
4482
4483
4484
4485
4486
4487
4488
4489
4490
def not_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT32, [4])
    y = helper.make_tensor_value_info('1', TensorProto.INT32, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


4491
@onnx_test()
4492
4493
4494
4495
4496
4497
4498
4499
4500
def not_bool_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [4])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


4501
@onnx_test()
Khalique's avatar
Khalique committed
4502
4503
4504
4505
def no_pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 2])

Khalique's avatar
Khalique committed
4506
4507
4508
4509
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 0, 0, 0],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
4510

Khalique's avatar
Khalique committed
4511
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4512

Khalique's avatar
Khalique committed
4513

4514
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
def nonzero_dynamic_test():
    x = helper.make_tensor_value_info('data', TensorProto.BOOL, [2, 2])
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [x], [y])


4526
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
def nonzero_test():
    data1 = np.array([[1., 0.], [1., 1.]])
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.FLOAT,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.float))
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [], [y], [data])


4542
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
def nonzero_int_test():
    data1 = np.array([[1, 1, 0], [1, 0, 1]])
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.INT16,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.int16))
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 4])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [], [y], [data])


4558
@onnx_test()
kahmed10's avatar
kahmed10 committed
4559
def onehot_test():
Shucai Xiao's avatar
Shucai Xiao committed
4560
4561
4562
4563
4564
4565
    axis_value = 0
    depth = np.array([3])
    indices = helper.make_tensor_value_info("indices", TensorProto.INT32,
                                            [5, 2])
    values = helper.make_tensor_value_info("values", TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 5, 2])
kahmed10's avatar
kahmed10 committed
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576

    depth_tensor = helper.make_tensor(name="depth",
                                      data_type=TensorProto.INT32,
                                      dims=None,
                                      vals=depth.astype(int))

    node = onnx.helper.make_node('OneHot',
                                 inputs=['indices', 'depth', 'values'],
                                 outputs=['y'],
                                 axis=axis_value)

Shucai Xiao's avatar
Shucai Xiao committed
4577
    return ([node], [indices, values], [y], [depth_tensor])
kahmed10's avatar
kahmed10 committed
4578
4579


4580
@onnx_test()
Khalique's avatar
Khalique committed
4581
4582
4583
4584
def pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 4])

Khalique's avatar
Khalique committed
4585
4586
4587
4588
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
4589

Khalique's avatar
Khalique committed
4590
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4591

Khalique's avatar
Khalique committed
4592

4593
@onnx_test()
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
def pad_3arg_test():
    values = np.array([1])
    val_tensor = helper.make_tensor(name='val',
                                    data_type=TensorProto.FLOAT,
                                    dims=values.reshape(()).shape,
                                    vals=values.astype(float))
    arg_val = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_val'],
                                    value=val_tensor)

    sizes = np.array([1, 1, 2, 2])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 5])

    node = onnx.helper.make_node('Pad',
                                 inputs=['0', 'arg_pad', 'arg_val'],
                                 outputs=['1'])

    return ([arg_val, arg_pad, node], [x], [y])


4625
@onnx_test()
kahmed10's avatar
kahmed10 committed
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
def pad_reflect_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])

    sizes = np.array([0, 2, 0, 1])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])

    return ([arg_pad, node], [x], [y])


4648
@onnx_test()
kahmed10's avatar
kahmed10 committed
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
def pad_reflect_multiaxis_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])

    sizes = np.array([0, 2, 2, 0])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])

    return ([arg_pad, node], [x], [y])


Charlie Lin's avatar
Charlie Lin committed
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
@onnx_test()
def pad_attr_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None])

    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])

    return ([node], [x], [y])


@onnx_test()
def pad_cnst_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None])

    sizes = np.array([0, 2, 0, 1])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad', inputs=['0', 'arg_pad'], outputs=['1'])

    return ([arg_pad, node], [x], [y])


@onnx_test()
def pad_dyn_reflect_error():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None])

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0'],
                                 pads=[0, 2, 0, 1],
                                 outputs=['1'])

    return ([node], [x], [y])


4718
@onnx_test()
Khalique's avatar
Khalique committed
4719
4720
4721
def pow_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
4722
4723
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
4724
4725
4726
4727
4728
4729
4730

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
4731
    return ([node], [arg0, arg1], [arg_out])
Khalique's avatar
Khalique committed
4732

kahmed10's avatar
kahmed10 committed
4733

4734
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
def pow_fp32_i64_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


4750
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
def pow_i64_fp32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT64,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


4766
@onnx_test()
turneram's avatar
turneram committed
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
def prefix_scan_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2])
    axis_val = np.array([0])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis_val.shape,
                                     vals=axis_val.astype(int))
    node = onnx.helper.make_node('CumSum',
                                 inputs=['x', 'axis'],
                                 outputs=['y'],
                                 exclusive=1,
                                 reverse=1)
    return ([node], [x], [y], [axis_tensor])


4783
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
def prelu_brcst_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


4799
@onnx_test()
4800
def quantizelinear_test():
turneram's avatar
turneram committed
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


4814
@onnx_test()
turneram's avatar
turneram committed
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
def quantizelinear_int32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT32, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


4829
@onnx_test()
turneram's avatar
turneram committed
4830
def quantizelinear_zero_point_test():
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_quantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8,
                                            [1, 1, 5, 1])

    node = onnx.helper.make_node('QuantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)

    return ([node], [arg0, arg1, arg2], [arg_out])


4860
@onnx_test()
4861
4862
4863
4864
def quantizelinear_axis_test():
    return make_quantizelinear_axis_graph(2)


4865
@onnx_test()
4866
4867
4868
4869
def quantizelinear_neg_axis_test():
    return make_quantizelinear_axis_graph(-2)


4870
@onnx_test()
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
def randomnormal_test():
    dtype = 11
    mean = 10.0
    scale = 1.5
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 mean=mean,
                                 scale=scale,
                                 seed=seed,
                                 shape=shape)

    return ([node], [], [output])


4892
@onnx_test()
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
def randomnormal_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 shape=shape)

    return ([node], [], [output])


4908
@onnx_test()
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
def randomnormal_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])

    return ([node], [input], [output])


4923
@onnx_test()
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
def randomnormal_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype)

    return ([node], [], [output])


4937
@onnx_test()
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
def randomnormallike_test():
    dtype = 10
    mean = 10.0
    scale = 1.5
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormalLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 dtype=dtype,
                                 mean=mean,
                                 scale=scale,
                                 seed=seed)

    return ([node], [input], [output])


4959
@onnx_test()
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
def randomnormallike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormalLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 seed=seed)

    return ([node], [input], [output])


4975
@onnx_test()
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
def randomuniform_test():
    dtype = 11
    high = 1.0
    low = 0.0
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 high=high,
                                 low=low,
                                 seed=seed,
                                 shape=shape)

    return ([node], [], [output])


4997
@onnx_test()
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
def randomuniform_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 shape=shape)

    return ([node], [], [output])


5013
@onnx_test()
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
def randomuniform_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])

    return ([node], [input], [output])


5028
@onnx_test()
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
def randomuniform_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype)

    return ([node], [], [output])


5042
@onnx_test()
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
def randomuniformlike_test():
    dtype = 10
    high = 10.0
    low = 1.0
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniformLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 dtype=dtype,
                                 high=high,
                                 low=low,
                                 seed=seed)

    return ([node], [input], [output])


5064
@onnx_test()
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
def randomuniformlike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniformLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 seed=seed)

    return ([node], [input], [output])


5080
@onnx_test()
kahmed10's avatar
kahmed10 committed
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
def range_test():

    start_val = np.array([10])
    limit_val = np.array([6])
    delta_val = np.array([-3])

    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.INT64,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.int64))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.INT64,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.int64))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.INT64,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.int64))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


5123
@onnx_test()
kahmed10's avatar
kahmed10 committed
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
def range_float_test():

    start_val = np.array([2])
    limit_val = np.array([11])
    delta_val = np.array([2])

    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.float))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.float))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.float))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


5166
@onnx_test()
kahmed10's avatar
kahmed10 committed
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
def recip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Reciprocal',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


5180
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
def reducel1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


Brian Pickrell's avatar
Brian Pickrell committed
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
@onnx_test
def reducel1_dyn_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None])
    axes = [-2]

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducel1_dyn_noaxes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None])

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 keepdims=0)

    return ([node], [x], [y])


5223
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
def reducel2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])
    axes = [-1]

    node = onnx.helper.make_node('ReduceL2',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


5238
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
def reduce_log_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 6])
    axes = [-3]

    node = onnx.helper.make_node('ReduceLogSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


5253
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
def reduce_log_sum_exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])
    axes = [-4]

    node = onnx.helper.make_node('ReduceLogSumExp',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


5268
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5269
5270
def reducemax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
5271
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
Brian Pickrell's avatar
Brian Pickrell committed
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287

    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducemax_dyn_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 4, 6])
Shucai Xiao's avatar
Shucai Xiao committed
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])

Khalique's avatar
Khalique committed
5298

5299
@onnx_test()
Khalique's avatar
Khalique committed
5300
5301
5302
def reducemean_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
5303
    axes = [2, 3]
Khalique's avatar
Khalique committed
5304

Khalique's avatar
Khalique committed
5305
5306
5307
5308
5309
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
5310

Khalique's avatar
Khalique committed
5311
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5312

kahmed10's avatar
kahmed10 committed
5313

5314
@onnx_test()
Khalique's avatar
Khalique committed
5315
5316
5317
def reducemean_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
5318
    axes = [2]
Khalique's avatar
Khalique committed
5319

Khalique's avatar
Khalique committed
5320
5321
5322
5323
5324
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
5325

Khalique's avatar
Khalique committed
5326
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5327

kahmed10's avatar
kahmed10 committed
5328

5329
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
def reducemin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 1])
    axes = [1, 3]

    node = onnx.helper.make_node('ReduceMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5342

kahmed10's avatar
kahmed10 committed
5343

5344
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5345
def reduceprod_test():
Khalique's avatar
Khalique committed
5346
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
5347
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
5348
    axes = [2]
Khalique's avatar
Khalique committed
5349

Shucai Xiao's avatar
Shucai Xiao committed
5350
    node = onnx.helper.make_node('ReduceProd',
Khalique's avatar
Khalique committed
5351
5352
5353
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
Shucai Xiao's avatar
Shucai Xiao committed
5354
                                 keepdims=1)
Khalique's avatar
Khalique committed
5355

Khalique's avatar
Khalique committed
5356
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5357

Khalique's avatar
Khalique committed
5358

5359
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5360
def reducesum_test():
Khalique's avatar
Khalique committed
5361
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
5362
5363
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = [2]
Khalique's avatar
Khalique committed
5364

Khalique's avatar
Khalique committed
5365
5366
5367
5368
5369
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
5370

Khalique's avatar
Khalique committed
5371
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5372

Khalique's avatar
Khalique committed
5373

5374
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
def reducesum_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=False)

    return ([node], [x], [y], [axes_tensor])


5393
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
def reducesum_noop_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=True)

    return ([node], [x], [y], [axes_tensor])


5412
@onnx_test()
Khalique's avatar
Khalique committed
5413
5414
5415
def reducesum_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
5416
    axes = [2, 3]
Khalique's avatar
Khalique committed
5417

Khalique's avatar
Khalique committed
5418
5419
5420
5421
5422
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
5423

Khalique's avatar
Khalique committed
5424
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5425

Khalique's avatar
Khalique committed
5426

5427
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
def reducesum_multiaxis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
    axes = [2, 3]

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


5442
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
def reducesum_square_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceSumSquare',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


5457
@onnx_test()
Khalique's avatar
Khalique committed
5458
5459
5460
def reshape_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
Khalique's avatar
Khalique committed
5461
    x_shape_list = [3, 8]
Khalique's avatar
Khalique committed
5462
5463
5464
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3, 8])

Khalique's avatar
Khalique committed
5465
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
5466

Khalique's avatar
Khalique committed
5467
5468
5469
5470
5471
5472
5473
    node2 = onnx.helper.make_node('Reshape',
                                  inputs=['0'],
                                  shape=x_shape_list,
                                  outputs=['3'])

    return ([node, node2], [x, x_shape], [y, y2],
            [helper.make_tensor('1', TensorProto.INT64, [2], [3, 8])])
Khalique's avatar
Khalique committed
5474
5475


5476
@onnx_test()
Khalique's avatar
Khalique committed
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
def reshape_non_standard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])

    trans = helper.make_node(
        'Transpose',
        inputs=['x'],
        outputs=['trans_x'],
        perm=[0, 2, 1],
    )

Khalique's avatar
Khalique committed
5488
5489
5490
5491
5492
5493
    res = onnx.helper.make_node('Reshape',
                                inputs=['trans_x'],
                                outputs=['y'],
                                shape=[4, 3, 2])

    return ([trans, res], [x], [y])
Khalique's avatar
Khalique committed
5494
5495


5496
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5497
5498
5499
5500
5501
5502
5503
5504
def resize_downsample_f_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
5505
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])
Shucai Xiao's avatar
Shucai Xiao committed
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='align_corners',
        mode='nearest',
        nearest_mode='floor')

    return ([node], [X], [Y], [scale_tensor])


5518
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
def resize_downsample_c_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')

    return ([node], [X], [Y], [scale_tensor])


5539
@onnx_test()
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
def resize_downsample_linear_test():
    scales = np.array([1.0, 1.0, 0.6, 0.5], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scale_tensor])


5558
@onnx_test()
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
def resize_nonstd_input_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 4, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

    trn = onnx.helper.make_node('Transpose',
                                inputs=['X'],
                                outputs=['TX'],
                                perm=[0, 1, 3, 2])

    node = onnx.helper.make_node('Resize',
                                 inputs=['TX', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')

    return ([trn, node], [X], [Y], [scale_tensor])


5584
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
def resize_outsize_test():
    out_lens = np.array([1, 1, 4, 6], dtype=np.int64)
    out_lens_tensor = helper.make_tensor(name='out_lens',
                                         data_type=TensorProto.INT64,
                                         dims=out_lens.shape,
                                         vals=out_lens.flatten().astype(
                                             np.int64))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', '', 'out_lens'],
        outputs=['Y'],
        coordinate_transformation_mode='tf_half_pixel_for_nn',
        mode='nearest',
        nearest_mode='round_prefer_floor')

    return ([node], [X], [Y], [out_lens_tensor])


5607
@onnx_test()
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
def resize_upsample_linear_ac_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        mode='linear',
        coordinate_transformation_mode='align_corners')

    return ([node], [X], [Y], [scales_tensor])


5628
@onnx_test()
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
def resize_upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scales_tensor])


5647
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
def resize_upsample_pf_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='nearest')

    return ([node], [X], [Y], [scale_tensor])


5666
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
def resize_upsample_pc_test():
    scales = np.array([1.0, 1.0, 2.0, 1.5], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='pytorch_half_pixel',
        mode='nearest',
        exclude_outside=0,
        nearest_mode='round_prefer_ceil')

    return ([node], [X], [Y], [scale_tensor])


5689
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
def reversesequence_4D_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2, 2])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=0,
        batch_axis=1,
        sequence_lens=[2, 1],
    )
    return ([node], [x], [y])


5705
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
def reversesequence_batch_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    seq_lens = np.array([1, 2, 3, 4])
    seq_lens_tensor = helper.make_tensor(
        name="sequence_lens",
        data_type=TensorProto.INT64,
        dims=seq_lens.shape,
        vals=seq_lens.astype(np.int64),
    )
    arg_seq_lens = helper.make_node(
        "Constant",
        inputs=[],
        outputs=['arg_seq_lens'],
        value=seq_lens_tensor,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x', 'arg_seq_lens'],
        outputs=['y'],
        time_axis=1,
        batch_axis=0,
    )
    return ([arg_seq_lens, node], [x], [y])


5733
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
def reversesequence_batch_axis_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4, 2])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=0,
        batch_axis=2,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


5749
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
def reversesequence_rank_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


5763
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
def reversesequence_sequence_lens_shape_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        sequence_lens=[4, 3, 2],
    )
    return ([node], [x], [y])


5777
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
def reversesequence_same_axis_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=1,
        batch_axis=1,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


5793
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
def reversesequence_time_axis_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4, 2, 3])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=3,
        batch_axis=0,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


5809
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
def reversesequence_time_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=0,
        batch_axis=1,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


5825
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
def roialign_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 4, 7, 8])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 1, 1])

    node = onnx.helper.make_node('RoiAlign',
                                 inputs=['x', 'rois', 'batch_ind'],
                                 outputs=['y'])

    return ([node], [x, roi, bi], [y])


5839
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
def roialign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 5, 4, 7])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 5, 5])

    node = onnx.helper.make_node(
        'RoiAlign',
        inputs=['x', 'rois', 'batch_ind'],
        outputs=['y'],
        spatial_scale=2.0,
        output_height=5,
        output_width=5,
        sampling_ratio=3,
        mode="avg",
        coordinate_transformation_mode="output_half_pixel")

    return ([node], [x, roi, bi], [y])


5860
@onnx_test()
5861
def scatter_add_test():
Shucai Xiao's avatar
Shucai Xiao committed
5862
5863
5864
5865
5866
5867
5868
5869
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
        'ScatterElements',
        reduction='add',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


5880
@onnx_test()
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
def scatter_mul_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'ScatterElements',
        reduction='mul',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


5900
@onnx_test()
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
def scatter_none_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'ScatterElements',
        reduction='none',
Shucai Xiao's avatar
Shucai Xiao committed
5912
5913
5914
5915
5916
5917
5918
5919
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


5920
@onnx_test()
turneram's avatar
turneram committed
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
def scatternd_add_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'],
                                 reduction="add")

    return ([node], [data, indices, updates], [output])


5938
@onnx_test()
turneram's avatar
turneram committed
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
def scatternd_mul_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'],
                                 reduction="mul")

    return ([node], [data, indices, updates], [output])


5956
@onnx_test()
turneram's avatar
turneram committed
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
def scatternd_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'])

    return ([node], [data, indices, updates], [output])


5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
@onnx_test()
def scatternd_dyn_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT,
                                         [None, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [None, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [None, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [None, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'])

    return ([node], [data, indices, updates], [output])


5991
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
def selu_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [2, 3])

    node = onnx.helper.make_node('Selu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.3,
                                 gamma=0.5)

    return ([node], [x], [y])


6005
@onnx_test()
Khalique's avatar
Khalique committed
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
def shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
6016
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6017

Khalique's avatar
Khalique committed
6018

6019
@onnx_test()
Khalique's avatar
Khalique committed
6020
6021
def shape_gather_test():
    values = np.array([1])
kahmed10's avatar
kahmed10 committed
6022
    # value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
Khalique's avatar
Khalique committed
6023
6024
6025
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])

Khalique's avatar
Khalique committed
6026
6027
6028
6029
    value_tensor = helper.make_tensor(name='const_tensor',
                                      data_type=TensorProto.INT32,
                                      dims=values.shape,
                                      vals=values.flatten().astype(int))
Khalique's avatar
Khalique committed
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050

    node_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['value'],
        value=value_tensor,
    )

    node_shape = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    node_gather = helper.make_node(
        'Gather',
        inputs=['y', 'value'],
        outputs=['z'],
        axis=0,
    )

Khalique's avatar
Khalique committed
6051
6052
    return ([node_const, node_shape, node_gather], [x], [z])

Khalique's avatar
Khalique committed
6053

6054
@onnx_test()
Khalique's avatar
Khalique committed
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
def sign_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])

    node = onnx.helper.make_node(
        'Sign',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
6065
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6066

Khalique's avatar
Khalique committed
6067

6068
@onnx_test()
Khalique's avatar
Khalique committed
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
def sin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
6079
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6080

Khalique's avatar
Khalique committed
6081

6082
@onnx_test()
Khalique's avatar
Khalique committed
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
def sinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
6093
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6094

Khalique's avatar
Khalique committed
6095

6096
@onnx_test()
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
def sinh_dynamic_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


6110
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
def size_float_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


6122
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
def size_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 1])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


6134
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
def size_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


6146
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
def size_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


6158
@onnx_test()
kahmed10's avatar
kahmed10 committed
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
def slice_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])

    return ([node], [x], [y])


6173
@onnx_test()
kahmed10's avatar
kahmed10 committed
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
def slice_3arg_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])
    start = np.array([0, 0])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))

    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    end = np.array([2, 5])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    node = onnx.helper.make_node('Slice',
                                 inputs=['0', 'arg_start', 'arg_end'],
                                 outputs=['1'])

    return ([arg_start, arg_end, node], [x], [y])


6205
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6206
6207
6208
6209
6210
6211
def slice_5arg_test():
    step = np.array([1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-1, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-5, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


6258
@onnx_test()
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
6259
6260
6261
6262
6263
6264
def slice_5arg_reverse_test():
    step = np.array([-1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
Shucai Xiao's avatar
Shucai Xiao committed
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

6280
    end = np.array([-5, -1])
Shucai Xiao's avatar
Shucai Xiao committed
6281
6282
6283
6284
6285
6286
6287
6288
6289
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
    start = np.array([-1, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


6311
@onnx_test()
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
def slice_5arg_step_test():
    step = np.array([-2, 2])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-5, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-1, -3])
Shucai Xiao's avatar
Shucai Xiao committed
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


6364
@onnx_test()
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
def slice_max_end_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [10, 20])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [9, 17])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 2],
                                 ends=[3000000000, -1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
6375

Khalique's avatar
Khalique committed
6376
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6377

Khalique's avatar
Khalique committed
6378

6379
@onnx_test()
Khalique's avatar
Khalique committed
6380
6381
6382
6383
def softmax_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3])

Khalique's avatar
Khalique committed
6384
    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])
Khalique's avatar
Khalique committed
6385

Khalique's avatar
Khalique committed
6386
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6387

Khalique's avatar
Khalique committed
6388

6389
@onnx_test()
6390
6391
def softmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 8])
6392
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402

    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])

    node1 = onnx.helper.make_node('Softmax', inputs=['1'], outputs=['2'])

6403
    return ([node0, node1], [x], [y])
6404
6405


6406
@onnx_test()
6407
6408
6409
6410
6411
6412
6413
6414
6415
def softmax_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 4, 4])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 4, 4])

    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


6416
@onnx_test()
turneram's avatar
turneram committed
6417
6418
6419
6420
6421
6422
6423
6424
6425
def softsign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


turneram's avatar
turneram committed
6426
6427
6428
6429
6430
6431
6432
6433
6434
def softplus_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


6435
@onnx_test()
turneram's avatar
turneram committed
6436
6437
6438
6439
6440
6441
6442
6443
6444
def softsign_nd_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])

    node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


turneram's avatar
turneram committed
6445
6446
6447
6448
6449
6450
6451
6452
6453
def softplus_nd_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])

    node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


6454
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
def split_minus_axis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 5])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 5])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 5])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2', 'y3'],
        axis=-1,
    )

    return ([node], [x], [y1, y2, y3])


6471
@onnx_test()
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
def split_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[7, 4, 4])

    return ([node], [x], [y1, y2, y3])


6487
@onnx_test()
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
def split_test_default():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [5, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [5, 15])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2'],
    )

    return ([node], [x], [y1, y2])


6502
@onnx_test()
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
def split_test_no_attribute():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [300, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [75, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [75, 15])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [75, 15])
    y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [75, 15])

    split = np.ones(4) * 75
    split_tensor = helper.make_tensor(name="split",
                                      data_type=TensorProto.INT64,
                                      dims=split.shape,
                                      vals=split.astype(np.int64))
    const_node = helper.make_node("Constant",
                                  inputs=[],
                                  outputs=['split'],
                                  value=split_tensor)

    node = onnx.helper.make_node(
        'Split',
        inputs=['x', 'split'],
        outputs=['y1', 'y2', 'y3', 'y4'],
    )

    return ([const_node, node], [x], [y1, y2, y3, y4])


6529
@onnx_test()
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
def split_test_no_attribute_invalid_split():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [300, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [75, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [75, 15])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [75, 15])
    y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [75, 15])

    split = np.ones(4)
    split_tensor = helper.make_tensor(name="split",
                                      data_type=TensorProto.INT64,
                                      dims=split.shape,
                                      vals=split.astype(np.int64))
    const_node = helper.make_node("Constant",
                                  inputs=[],
                                  outputs=['split'],
                                  value=split_tensor)

    node = onnx.helper.make_node(
        'Split',
        inputs=['x', 'split'],
        outputs=['y1', 'y2', 'y3', 'y4'],
    )

    return ([const_node, node], [x], [y1, y2, y3, y4])


6556
@onnx_test()
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
def split_test_invalid_split():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[1, 1, 1])

    return ([node], [x], [y1, y2, y3])


6572
@onnx_test()
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
def split_test_no_attribute_invalid_input_split():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[])

    return ([node], [x], [y1, y2, y3])


6588
@onnx_test()
Khalique's avatar
Khalique committed
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
def sqrt_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Sqrt',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
6599
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6600

Khalique's avatar
Khalique committed
6601

6602
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
def squeeze_axes_input_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([1, 3], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])

    return ([node], [x], [y], [axes_tensor])


6619
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
def squeeze_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])

    return ([node], [x], [y], [axes_tensor])


6636
@onnx_test()
Khalique's avatar
Khalique committed
6637
def squeeze_unsqueeze_test():
Khalique's avatar
Khalique committed
6638
6639
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, 1, 1, 2, 1])
6640
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT,
Khalique's avatar
Khalique committed
6641
                                      [1, 1, 3, 1, 2, 1])
Khalique's avatar
Khalique committed
6642

Khalique's avatar
Khalique committed
6643
6644
6645
6646
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
6647

Khalique's avatar
Khalique committed
6648
6649
6650
6651
6652
    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

6653
    return ([node, node2], [x], [y])
Khalique's avatar
Khalique committed
6654
6655


6656
@onnx_test()
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
def squeeze_unsqueeze_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, None, 1, 1, None, 1])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                      [1, 1, None, 1, None, 1])

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])

    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

    return ([node, node2], [x], [y])


6676
@onnx_test()
Khalique's avatar
Khalique committed
6677
6678
6679
def sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
6680
6681
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
6682
6683
6684
6685
6686

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
Khalique's avatar
Khalique committed
6687
6688
        broadcast=1,
        axis=1,
Khalique's avatar
Khalique committed
6689
6690
    )

Khalique's avatar
Khalique committed
6691
6692
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
6693

6694
@onnx_test()
Khalique's avatar
Khalique committed
6695
6696
def sub_scalar_test():
    values = np.array([1])
Khalique's avatar
Khalique committed
6697
6698
6699
6700
6701
6702
6703
    arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                             [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    values_tensor = helper.make_tensor(name='const',
                                       data_type=TensorProto.FLOAT,
6704
                                       dims=values.reshape(()).shape,
Khalique's avatar
Khalique committed
6705
                                       vals=values.flatten().astype(float))
Khalique's avatar
Khalique committed
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719

    arg_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['arg_const'],
        value=values_tensor,
    )

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', 'arg_const'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
6720
6721
    return ([arg_const, node], [arg_node], [arg_out])

Khalique's avatar
Khalique committed
6722

6723
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
def sum_int_test():
    a = helper.make_tensor_value_info('0', TensorProto.INT16, [3])
    b = helper.make_tensor_value_info('1', TensorProto.UINT16, [3])
    c = helper.make_tensor_value_info('2', TensorProto.UINT32, [3])
    y = helper.make_tensor_value_info('3', TensorProto.UINT32, [3])

    cnode1 = onnx.helper.make_node('Cast', inputs=['0'], outputs=['c0'], to=12)

    cnode2 = onnx.helper.make_node('Cast', inputs=['1'], outputs=['c1'], to=12)

    node = onnx.helper.make_node(
        'Sum',
        inputs=['c0', 'c1', '2'],
        outputs=['3'],
    )

    return ([cnode1, cnode2, node], [a, b, c], [y])


6743
@onnx_test()
Khalique's avatar
Khalique committed
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
def sum_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Sum',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
6756
6757
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
6758

6759
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
def sum_type_test():
    valb = np.array([1, 0])
    t_bool = helper.make_tensor(name="bool",
                                data_type=TensorProto.BOOL,
                                dims=valb.shape,
                                vals=valb.astype(np.bool))

    val = np.array([1, 1])
    t_int8 = helper.make_tensor(name="int8",
                                data_type=TensorProto.INT8,
                                dims=val.shape,
                                vals=val.astype(np.int8))

    t_uint8 = helper.make_tensor(name="uint8",
                                 data_type=TensorProto.UINT8,
                                 dims=val.shape,
                                 vals=val.astype(np.uint8))

    t_uint16 = helper.make_tensor(name="uint16",
                                  data_type=TensorProto.UINT16,
                                  dims=val.shape,
                                  vals=val.astype(np.uint16))

    t_uint32 = helper.make_tensor(name="uint32",
                                  data_type=TensorProto.UINT32,
                                  dims=val.shape,
                                  vals=val.astype(np.uint32))

    t_uint64 = helper.make_tensor(name="uint64",
                                  data_type=TensorProto.UINT64,
                                  dims=val.shape,
                                  vals=val.astype(np.uint64))

    t_double = helper.make_tensor(name="double",
                                  data_type=TensorProto.DOUBLE,
                                  dims=val.shape,
                                  vals=val.astype(np.float64))

    valr = np.array([1.5, 2.0])
    t_raw = helper.make_tensor(name="raw",
                               data_type=TensorProto.DOUBLE,
                               dims=valr.shape,
                               vals=valr.tobytes(),
                               raw=True)

    n_bool = onnx.helper.make_node('Cast',
                                   inputs=['bool'],
                                   outputs=['o_bool'],
                                   to=11)

    n_int8 = onnx.helper.make_node('Cast',
                                   inputs=['int8'],
                                   outputs=['o_int8'],
                                   to=11)

    n_uint8 = onnx.helper.make_node('Cast',
                                    inputs=['uint8'],
                                    outputs=['o_uint8'],
                                    to=11)

    n_uint16 = onnx.helper.make_node('Cast',
                                     inputs=['uint16'],
                                     outputs=['o_uint16'],
                                     to=11)

    n_uint32 = onnx.helper.make_node('Cast',
                                     inputs=['uint32'],
                                     outputs=['o_uint32'],
                                     to=11)

    n_uint64 = onnx.helper.make_node('Cast',
                                     inputs=['uint64'],
                                     outputs=['o_uint64'],
                                     to=11)

    node = onnx.helper.make_node(
        'Sum',
        inputs=[
            'o_bool', 'o_int8', 'o_uint8', 'o_uint16', 'o_uint32', 'o_uint64',
            'double', 'raw'
        ],
        outputs=['out'],
    )

    y = helper.make_tensor_value_info('out', TensorProto.DOUBLE, [2])

    return ([n_bool, n_int8, n_uint8, n_uint16, n_uint32, n_uint64,
             node], [], [y], [
                 t_bool, t_int8, t_uint8, t_uint16, t_uint32, t_uint64,
                 t_double, t_raw
             ])


6853
@onnx_test()
Khalique's avatar
Khalique committed
6854
6855
6856
6857
6858
def tan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
6859
6860
6861
6862
        'Tan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
6863

Khalique's avatar
Khalique committed
6864
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6865

Khalique's avatar
Khalique committed
6866

6867
@onnx_test()
Khalique's avatar
Khalique committed
6868
6869
6870
6871
6872
def tanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
6873
6874
6875
6876
        'Tanh',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
6877

Khalique's avatar
Khalique committed
6878
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6879

Khalique's avatar
Khalique committed
6880

6881
@onnx_test()
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
def thresholdedrelu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'])

    return ([node], [x], [y])


6893
@onnx_test()
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
def thresholdedrelu_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
    alpha = 3.0

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=alpha)

    return ([node], [x], [y])


6907
@onnx_test()
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
def thresholdedrelu_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [2, 2, 3])
    alpha = 3.0

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=alpha)

    return ([node], [x], [y])


6921
@onnx_test()
kahmed10's avatar
kahmed10 committed
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
def tile_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [1, 2])])


6933
@onnx_test()
kahmed10's avatar
kahmed10 committed
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
def tile_test_3x2():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [6, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [3, 2])])


6945
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
def topk_attrk_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 2, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 2, 3, 2])

    node = onnx.helper.make_node('TopK',
                                 inputs=['data'],
                                 outputs=['val', 'indices'],
                                 k=2)
    return ([node], [x], [val, ind])


6959
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
def topk_neg_axis_test():
    k = np.array([3])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [3, 3, 5, 6])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [3, 3, 5, 6])

    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('TopK',
                                 inputs=['data', 'k'],
                                 outputs=['val', 'indices'],
                                 axis=-2,
                                 sorted=0)
    return ([node], [x], [val, ind], [k_tensor])


6980
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
def topk_test():
    k = np.array([4])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 4, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 4, 3, 2])

    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('TopK',
                                 inputs=['data', 'k'],
                                 outputs=['val', 'indices'],
                                 largest=0,
                                 axis=1)
    return ([node], [x], [val, ind], [k_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
def transpose_default_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 5, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2, 5, 1])

    node = onnx.helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


7014
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
def transpose_invalid_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 2, 1],
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


7029
@onnx_test()
Khalique's avatar
Khalique committed
7030
7031
7032
7033
7034
7035
7036
7037
def transpose_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
Charlie Lin's avatar
Charlie Lin committed
7038
7039
7040
7041
7042
7043
        outputs=['1'],
    )

    return ([node], [x], [y])


7044
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
7045
7046
7047
7048
7049
7050
7051
7052
def transpose_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
Khalique's avatar
Khalique committed
7053
7054
7055
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
7056
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7057

Khalique's avatar
Khalique committed
7058

Khalique's avatar
Khalique committed
7059
7060
7061
@onnx_test
def transpose_gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 5, 4, 6])
Khalique's avatar
Khalique committed
7062
7063
7064
7065
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 4, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [3, 2, 3, 4, 5, 4, 5, 6])
Khalique's avatar
Khalique committed
7066
7067
7068
7069
7070
7071
7072
7073

    td = onnx.helper.make_node(
        'Transpose',
        inputs=['data'],
        outputs=['tdata'],
        perm=[0, 2, 1, 3],
    )

Khalique's avatar
Khalique committed
7074
7075
7076
7077
    ti = onnx.helper.make_node('Transpose',
                               inputs=['indices'],
                               outputs=['tindices'],
                               perm=[0, 2, 1, 3])
Khalique's avatar
Khalique committed
7078
7079
7080
7081
7082
7083
7084
7085

    node = onnx.helper.make_node(
        'Gather',
        inputs=['tdata', 'tindices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
7086
    return ([td, ti, node], [x, i], [y])
Khalique's avatar
Khalique committed
7087

Khalique's avatar
Khalique committed
7088

kahmed10's avatar
kahmed10 committed
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
@onnx_test()
def trilu_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'Trilu',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


@onnx_test()
def trilu_batch_diff_k_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    k = np.array([2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node(
        'Trilu',
        inputs=['x', 'k'],
        outputs=['y'],
    )
    return ([node], [x], [y], [k_tensor])


@onnx_test()
def trilu_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node('Trilu', inputs=['x'], outputs=['y'], upper=0)
    return ([node], [x], [y])


@onnx_test()
def trilu_neg_k_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    k = np.array([-1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('Trilu', inputs=['x', 'k'], outputs=['y'])
    return ([node], [x], [y], [k_tensor])


@onnx_test()
def trilu_out_k_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    k = np.array([5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('Trilu', inputs=['x', 'k'], outputs=['y'])
    return ([node], [x], [y], [k_tensor])


@onnx_test()
def trilu_row_one_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4])
    k = np.array([1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node(
        'Trilu',
        inputs=['x', 'k'],
        outputs=['y'],
    )
    return ([node], [x], [y], [k_tensor])


7175
@onnx_test()
7176
7177
7178
7179
7180
7181
7182
7183
7184
def undefined_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('Identity', inputs=[''], outputs=['1'])

    return ([node], [x], [y])


7185
@onnx_test()
Khalique's avatar
Khalique committed
7186
7187
7188
def unknown_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
7189
7190
7191

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
7192
7193
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
7194
    node = onnx.helper.make_node('Unknown', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
7195

Khalique's avatar
Khalique committed
7196
    node2 = onnx.helper.make_node('Unknown', inputs=['2'], outputs=['3'])
Khalique's avatar
Khalique committed
7197

Khalique's avatar
Khalique committed
7198
    return ([node, node2], [x, y], [a])
7199
7200


7201
@onnx_test()
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
def unknown_aten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('ATen',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 operator='unknown')

    return ([node], [x, y], [a])


7218
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
def upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Upsample',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scales_tensor])


7237
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
def upsample_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Upsample',
        inputs=['X', 'scales'],
        outputs=['Y'],
        mode='nearest',
    )

    return ([node], [X], [Y], [scale_tensor])


7258
@onnx_test()
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
def variable_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [None, 3, 16, 16])

    node = onnx.helper.make_node('Identity', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


7270
@onnx_test()
7271
7272
7273
7274
7275
7276
7277
7278
def variable_batch_leq_zero_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [0, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [-1, 3, 16, 16])

    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [-1, 3, 16, 16])
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])
Shucai Xiao's avatar
Shucai Xiao committed
7279
7280


7281
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
def where_test():
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 1, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 2, 2, 2])
    node = onnx.helper.make_node('Where',
                                 inputs=['c', 'x', 'y'],
                                 outputs=['z'])

    return ([node], [c, x, y], [z])