lowering.cpp 27.2 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
Paul's avatar
Paul committed
5
6
#include <migraphx/op/batch_norm.hpp>
#include <migraphx/op/convolution.hpp>
kahmed10's avatar
kahmed10 committed
7
#include <migraphx/op/deconvolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
8
#include <migraphx/op/quant_convolution.hpp>
Paul's avatar
Paul committed
9
#include <migraphx/op/dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
10
#include <migraphx/op/quant_dot.hpp>
Paul's avatar
Paul committed
11
12
13
14
15
16
17
18
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/logsoftmax.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/softmax.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
19
20
#include <migraphx/op/argmax.hpp>
#include <migraphx/op/argmin.hpp>
Paul's avatar
Paul committed
21
22
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
23
#include <migraphx/par_dfor.hpp>
Paul's avatar
Paul committed
24
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
25
#include <unordered_map>
Paul's avatar
Paul committed
26
#include <utility>
Paul's avatar
Paul committed
27

Paul's avatar
Paul committed
28
namespace migraphx {
Paul's avatar
Paul committed
29
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
30
31
32
33
34
35
36
37
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
38
39
40
41
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
42
43
44
45
{
    return x;
}

46
47
48
49
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
50
51
52
53
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
54
// args[4] -> bias
55
56
57
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
58
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
59
60
61
62
63
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
64
    op::batch_norm_inference op;
65

66
67
68
69
70
71
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

72
73
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
74
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
75

Paul's avatar
Paul committed
76
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
77
    {
78
79
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
80
81
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
82
83
84
85
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
86

87
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
88
89
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
90
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
91

92
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
93
94
95
96
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
97
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
98
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
99
100
101
102
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
103
104
                        });
                });
105
106
        }

107
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
108
        {
109
110
111
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
112
                    par_dfor(num_batch, num_channels, image_height, image_width)(
113
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
114
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
115
116
117
118
119
120
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
121
        }
122
123
124
125
126

        return output;
    }
};

Khalique's avatar
Khalique committed
127
struct cpu_lrn
Khalique's avatar
Khalique committed
128
{
Khalique's avatar
Khalique committed
129
    op::lrn op;
Khalique's avatar
Khalique committed
130

131
132
133
134
135
136
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
137
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
138
139
140
141
142
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
143
144
145
146
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
147
            float alphaoverarea = op.alpha / float(op.size);
148
149
            int radius_lower    = (op.size - 1) / 2;
            int radius_upper    = op.size / 2 + 1;
Khalique's avatar
Khalique committed
150

151
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
152
                float scale = 0;
Khalique's avatar
Khalique committed
153
                dfor(channels)([&](int c) {
154
155
                    auto start = (c - radius_lower) < 0 ? 0 : (c - radius_lower);
                    auto end   = (c + radius_upper) > channels ? channels : (c + radius_upper);
Khalique's avatar
Khalique committed
156
157
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
158
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
159
160
161
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
162
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
163
164
165
166
167
168
169
170
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

171
template <class Op>
Paul's avatar
Paul committed
172
173
struct cpu_convolution
{
174
    Op op;
175

176
177
178
179
180
181
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

182
    std::string name() const { return "cpu::" + op.name(); }
183
184
185
186
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        result.visit([&](auto output) {
            using type = typename decltype(output)::value_type;
            visit_all(args[0], args[1])([&](auto input, auto weights) {
                auto in   = input.get_shape().lens();
                auto in_h = in[2];
                auto in_w = in[3];

                auto wei   = weights.get_shape().lens();
                auto wei_n = wei[0];
                auto wei_c = wei[1];
                auto wei_h = wei[2];
                auto wei_w = wei[3];

                par_dfor(output_shape.lens()[0],
                         output_shape.lens()[1],
                         output_shape.lens()[2],
                         output_shape.lens()[3])(
                    [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                        const auto start_x  = i * op.stride[0] - op.padding[0];
                        const auto start_y  = j * op.stride[1] - op.padding[1];
                        const auto group_id = w / (wei_n / op.group);

                        type acc = type{0};
                        dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                            const auto in_x  = start_x + x;
                            const auto in_y  = start_y + y;
                            const auto in_ch = group_id * wei_c + k;
                            if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                                acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
                        });
                        output(o, w, i, j) = acc;
218
                    });
219
            });
220
221
222
223
224
        });
        return result;
    }
};

kahmed10's avatar
kahmed10 committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
template <class Op>
struct cpu_deconvolution
{
    Op op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::" + op.name(); }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            using type = typename decltype(output)::value_type;

            std::fill(output.begin(), output.end(), type{0});

            auto out_lens = output_shape.lens();
            auto out_h    = out_lens[2];
            auto out_w    = out_lens[3];

            auto in   = input.get_shape().lens();
            auto in_n = in[0];
            auto in_c = in[1];
            auto in_h = in[2];
            auto in_w = in[3];

            auto wei   = weights.get_shape().lens();
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];

            par_dfor(in_n, wei_c)([&](std::size_t o, std::size_t k) {

                dfor(in_c, in_h, in_w, wei_h, wei_w)(
                    [&](std::size_t w, std::size_t i, std::size_t j, std::size_t x, std::size_t y) {
                        const int start_x = i * op.stride[0] - op.padding[0];
                        const int start_y = j * op.stride[1] - op.padding[1];
                        const int out_x   = start_x + x * op.dilation[0];
                        const int out_y   = start_y + y * op.dilation[1];

                        const auto group_id = w / (wei_n / op.group);
                        const auto in_ch    = group_id * wei_c + k;

                        if(out_x >= 0 && out_x < out_h && out_y >= 0 && out_y < out_w)
                        {
                            output(o, in_ch, out_x, out_y) +=
                                input(o, w, i, j) * weights(w, k, x, y);
                        }
                    });
            });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
286
287
struct cpu_im2col
{
288
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
289

290
291
292
293
294
295
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
296
297
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
298

wsttiger's avatar
wsttiger committed
299
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
300
    {
Scott Thornton's avatar
Scott Thornton committed
301
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
302
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
303
304
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
305
306
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
307
308
309
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
310
311
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
312
313
314
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
315
316
            long kdiv2_h = long(kernel_h) / 2;
            long kdiv2_w = long(kernel_w) / 2;
Scott Thornton's avatar
Scott Thornton committed
317
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
318
319
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
320
            // account for padding for the starting position of the input pixels
Paul's avatar
Paul committed
321
            long iinput = kdiv2_h - long(pad_h);
wsttiger's avatar
wsttiger committed
322
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
323
324
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
Paul's avatar
Paul committed
325
                long jinput = kdiv2_w - long(pad_w);
Scott Thornton's avatar
Scott Thornton committed
326
327
328
329
330
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
331
332
333
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
334
335
                        auto idx    = iinput + long(koffset) - kdiv2_h;
                        auto jdx    = jinput + long(loffset) - kdiv2_w;
wsttiger's avatar
wsttiger committed
336
337
338
339
340
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
341
342
                }
            }
Scott Thornton's avatar
Scott Thornton committed
343
        });
Scott Thornton's avatar
Scott Thornton committed
344
345
346
347
        return result;
    }
};

Paul's avatar
Paul committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
375
    op::pooling op;
Paul's avatar
Paul committed
376

377
378
379
380
381
382
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
383
    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
384
385
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
386
387
388
389
390
391
392
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
393
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
394
395
396
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

427
struct cpu_op
Paul's avatar
Paul committed
428
{
429
430
    operation op;
    std::string name() const { return "cpu::" + op.name(); }
Paul's avatar
Paul committed
431
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
432
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
433
    {
Paul's avatar
Paul committed
434
        return op.compute(output_shape, args);
Paul's avatar
Paul committed
435
    }
Paul's avatar
Paul committed
436
    friend bool operator==(const cpu_op& x, const cpu_op& y) { return x.op == y.op; }
437
    friend bool operator==(const cpu_op& x, const operation& y)
Paul's avatar
Paul committed
438
    {
439
440
441
        if(x.name() != y.name())
            return false;
        return x == any_cast<cpu_op>(y);
Paul's avatar
Paul committed
442
    }
Paul's avatar
Paul committed
443
    friend bool operator==(const operation& x, const cpu_op& y) { return y == x; }
Paul's avatar
Paul committed
444
445
};

Khalique's avatar
Khalique committed
446
struct cpu_pad
447
{
Khalique's avatar
Khalique committed
448
    op::pad op;
449
450
451
452
453
454
455

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
456
    std::string name() const { return "cpu::contiguous"; }
457
458
459
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
460
        assert(output_shape.standard());
461
        argument result{output_shape};
Khalique's avatar
Khalique committed
462
        result.visit([&](auto output) { std::fill(output.begin(), output.end(), op.value); });
Khalique's avatar
Khalique committed
463
464

        visit_all(result, args[0])([&](auto output, auto input) {
465
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
466
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
467
468
469
470
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
471
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
472
            });
Khalique's avatar
Khalique committed
473
474
        });

475
476
477
478
        return result;
    }
};

Paul's avatar
Paul committed
479
480
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
481
    op::dot op;
482
483
484
485
486
487

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
Shucai Xiao's avatar
Shucai Xiao committed
488
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
489
490
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
491
492
493
494
495
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
496
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
497
    }
Paul's avatar
Paul committed
498

Paul's avatar
Paul committed
499
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
500
501
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
502
        // 3 inputs, it is alpha * A * B + beta * C, then
503
        // A and B are matrices, and C is of the same shape as A * B
Shucai Xiao's avatar
Shucai Xiao committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
526
527
528
529
        return result;
    }
};

530
531
532
struct cpu_quant_gemm
{
    op::quant_dot op;
533
534
535
536
537
538
539

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    std::string name() const { return "cpu::quant_dot"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
        return op.compute_shape(inputs);
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrices, and C is of the same shape to A * B

        // first, convert the args[0] and args[1] from int8_t to int32_t
        argument arg_0{{shape::int32_type, {args.at(0).get_shape().lens()}}};
        argument arg_1{{shape::int32_type, {args.at(1).get_shape().lens()}}};
        arg_0.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
561
562
            args.at(0).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
563
564
565
        });

        arg_1.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
566
567
            args.at(1).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
        });

        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, arg_0, arg_1, op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
590
        migemm(result, arg_0, arg_1, op.alpha, int32_t{0});
591
592
593
594
595

        return result;
    }
};

Khalique's avatar
Khalique committed
596
597
598
599
600
601
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
602
        auto a = op.alpha;
Khalique's avatar
Khalique committed
603
604
605
606
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
607
608
609
610
611
612
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
613
        auto a = op.alpha;
Khalique's avatar
Khalique committed
614
615
616
617
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
618
619
620
621
template <typename Op>
struct cpu_unary
{
    Op op;
622
623
624
625
626
627

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
628
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
629
    shape compute_shape(const std::vector<shape>& inputs) const
630
    {
Shucai Xiao's avatar
Shucai Xiao committed
631
632
        check_shapes{inputs}.has(1);
        auto s = inputs.at(0);
633
        return {s.type(), s.lens()};
634
635
    }

Paul's avatar
Paul committed
636
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
637
638
    {
        argument result{output_shape};
639
640
641
        visit_all(result, args[0])([&](auto output, auto input) {
            assert(input.get_shape().standard());
            std::transform(input.begin(), input.end(), output.begin(), op.fcn());
Paul's avatar
Paul committed
642
        });
643

Paul's avatar
Paul committed
644
645
646
647
        return result;
    }
};

648
template <class Op>
Khalique's avatar
Khalique committed
649
struct cpu_softmax
Paul's avatar
Paul committed
650
{
651
    Op op;
Khalique's avatar
Khalique committed
652
653
654
655
656
657
658

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

659
    std::string name() const { return "cpu::" + op.name(); }
Khalique's avatar
Khalique committed
660
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
661
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
662
663
    {
        argument result{output_shape};
664
665
666
667
        auto batch_lens    = output_shape.lens();
        int64_t tuned_axis = (op.axis < 0) ? op.axis + args[0].get_shape().lens().size() : op.axis;
        std::size_t n_dims = batch_lens[tuned_axis];
        batch_lens[tuned_axis] = 1;
668
669
        shape batch_shape{shape::int32_type, batch_lens};

Paul's avatar
Paul committed
670
671
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
672
673
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
674
675
            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            par_for(batch_shape.elements(), [&](auto i) {
676
                auto idx = batch_shape.multi(i);
Shucai Xiao's avatar
Shucai Xiao committed
677
                for(std::size_t j = 0; j < n_dims; ++j)
678
                {
679
680
                    idx[tuned_axis] = j;
                    batch_max[i]    = std::max(batch_max[i], input(idx.begin(), idx.end()));
681
                }
Khalique's avatar
Khalique committed
682

Shucai Xiao's avatar
Shucai Xiao committed
683
                for(std::size_t j = 0; j < n_dims; ++j)
684
                {
685
                    idx[tuned_axis]   = j;
Shucai Xiao's avatar
Shucai Xiao committed
686
687
                    std::size_t index = output_shape.index(idx);
                    output[index]     = std::exp(input[index] - batch_max[i]);
688
                }
Khalique's avatar
Khalique committed
689

Shucai Xiao's avatar
Shucai Xiao committed
690
                for(std::size_t j = 0; j < n_dims; ++j)
691
                {
692
                    idx[tuned_axis] = j;
693
694
                    batch_sum[i] += output(idx.begin(), idx.end());
                }
Khalique's avatar
Khalique committed
695

Shucai Xiao's avatar
Shucai Xiao committed
696
                for(std::size_t j = 0; j < n_dims; ++j)
697
                {
698
                    idx[tuned_axis] = j;
699
700
                    output(idx.begin(), idx.end()) =
                        op.output()(output(idx.begin(), idx.end()), batch_sum[i]);
701
                }
Shucai Xiao's avatar
Shucai Xiao committed
702
703
704
705
706
707
708
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
Aditya Atluri's avatar
Aditya Atluri committed
728
        apply_map["batch_norm_inference"] =
729
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
730
        apply_map["convolution"] = extend_op<cpu_convolution<op::convolution>, op::convolution>();
kahmed10's avatar
kahmed10 committed
731
732
733
734
        apply_map["deconvolution"] =
            extend_op<cpu_deconvolution<op::deconvolution>, op::deconvolution>();
        apply_map["dot"]       = extend_op<cpu_gemm, op::dot>();
        apply_map["quant_dot"] = extend_op<cpu_quant_gemm, op::quant_dot>();
735
736
737
738
739
740
741
742
743
        apply_map["quant_convolution"] =
            extend_op<cpu_convolution<op::quant_convolution>, op::quant_convolution>();
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
        apply_map["im2col"]     = extend_op<cpu_im2col, op::im2col>();
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
        apply_map["logsoftmax"] = extend_op<cpu_softmax<op::logsoftmax>, op::logsoftmax>();
        apply_map["lrn"]        = extend_op<cpu_lrn, op::lrn>();
        apply_map["pad"]        = extend_op<cpu_pad, op::pad>();
        apply_map["softmax"]    = extend_op<cpu_softmax<op::softmax>, op::softmax>();
Paul's avatar
Paul committed
744
745
746
747
748
749
750
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
751
            if(it->name() == "pooling")
Paul's avatar
Paul committed
752
753
754
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
755
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
756
            {
Paul's avatar
Paul committed
757
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
758
            }
Paul's avatar
Paul committed
759
            else if(is_context_free(it->get_operator()))
760
761
762
            {
                apply_cpu_op(it);
            }
Paul's avatar
Paul committed
763
764
765
        }
    }

766
767
768
769
770
    void apply_cpu_op(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_op{ins->get_operator()}, ins->inputs());
    }

Paul's avatar
Paul committed
771
772
773
    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
774
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
775
776
777
778
779
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
780
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
781
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
782
783
784
785
    }

    void apply_pooling(instruction_ref ins)
    {
786
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
787
        if(op.mode == "max")
Paul's avatar
Paul committed
788
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
789
        else if(op.mode == "average")
Paul's avatar
Paul committed
790
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
791
792
793
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
794
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
795
796

} // namespace cpu
Paul's avatar
Paul committed
797
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
798
} // namespace migraphx