lowering.cpp 29.1 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
Paul's avatar
Paul committed
5
6
#include <migraphx/op/batch_norm.hpp>
#include <migraphx/op/convolution.hpp>
kahmed10's avatar
kahmed10 committed
7
#include <migraphx/op/deconvolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
8
#include <migraphx/op/quant_convolution.hpp>
Paul's avatar
Paul committed
9
#include <migraphx/op/dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
10
#include <migraphx/op/quant_dot.hpp>
Paul's avatar
Paul committed
11
12
13
14
15
16
17
18
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/logsoftmax.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/softmax.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
19
20
#include <migraphx/op/argmax.hpp>
#include <migraphx/op/argmin.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
21
#include <migraphx/op/rnn_var_sl_last_output.hpp>
Paul's avatar
Paul committed
22
23
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
24
#include <migraphx/par_dfor.hpp>
25
#include <migraphx/clamp.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
27
#include <unordered_map>
Paul's avatar
Paul committed
28
#include <utility>
Paul's avatar
Paul committed
29

Paul's avatar
Paul committed
30
namespace migraphx {
Paul's avatar
Paul committed
31
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
32
33
34
35
36
37
38
39
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
40
41
42
43
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
44
45
46
47
{
    return x;
}

48
49
50
51
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
52
53
54
55
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
56
// args[4] -> bias
57
58
59
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
60
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
61
62
63
64
65
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
66
    op::batch_norm_inference op;
67

68
69
70
71
72
73
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

74
75
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
76
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
77

Paul's avatar
Paul committed
78
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
79
    {
80
81
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
82
83
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
84
85
86
87
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
88

89
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
90
91
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
92
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
93

94
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
95
96
97
98
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
99
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
100
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
101
102
103
104
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
105
106
                        });
                });
107
108
        }

109
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
110
        {
111
112
113
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
114
                    par_dfor(num_batch, num_channels, image_height, image_width)(
115
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
116
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
117
118
119
120
121
122
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
123
        }
124
125
126
127
128

        return output;
    }
};

Khalique's avatar
Khalique committed
129
struct cpu_lrn
Khalique's avatar
Khalique committed
130
{
Khalique's avatar
Khalique committed
131
    op::lrn op;
Khalique's avatar
Khalique committed
132

133
134
135
136
137
138
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
139
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
140
141
142
143
144
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
145
146
147
148
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
149
            float alphaoverarea = op.alpha / float(op.size);
150
151
            int radius_lower    = (op.size - 1) / 2;
            int radius_upper    = op.size / 2 + 1;
Khalique's avatar
Khalique committed
152

153
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
154
                float scale = 0;
Khalique's avatar
Khalique committed
155
                dfor(channels)([&](int c) {
156
157
                    auto start = (c - radius_lower) < 0 ? 0 : (c - radius_lower);
                    auto end   = (c + radius_upper) > channels ? channels : (c + radius_upper);
Khalique's avatar
Khalique committed
158
159
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
160
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
161
162
163
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
164
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
165
166
167
168
169
170
171
172
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

173
template <class Op>
Paul's avatar
Paul committed
174
175
struct cpu_convolution
{
176
    Op op;
177

178
179
180
181
182
183
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

184
    std::string name() const { return "cpu::" + op.name(); }
185
186
187
188
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        result.visit([&](auto output) {
            using type = typename decltype(output)::value_type;
            visit_all(args[0], args[1])([&](auto input, auto weights) {
                auto in   = input.get_shape().lens();
                auto in_h = in[2];
                auto in_w = in[3];

                auto wei   = weights.get_shape().lens();
                auto wei_n = wei[0];
                auto wei_c = wei[1];
                auto wei_h = wei[2];
                auto wei_w = wei[3];

                par_dfor(output_shape.lens()[0],
                         output_shape.lens()[1],
                         output_shape.lens()[2],
                         output_shape.lens()[3])(
                    [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                        const auto start_x  = i * op.stride[0] - op.padding[0];
                        const auto start_y  = j * op.stride[1] - op.padding[1];
                        const auto group_id = w / (wei_n / op.group);

                        type acc = type{0};
                        dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                            const auto in_x  = start_x + x;
                            const auto in_y  = start_y + y;
                            const auto in_ch = group_id * wei_c + k;
                            if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                                acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
                        });
                        output(o, w, i, j) = acc;
220
                    });
221
            });
222
223
224
225
226
        });
        return result;
    }
};

kahmed10's avatar
kahmed10 committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
template <class Op>
struct cpu_deconvolution
{
    Op op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::" + op.name(); }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            using type = typename decltype(output)::value_type;

            std::fill(output.begin(), output.end(), type{0});

            auto out_lens = output_shape.lens();
            auto out_h    = out_lens[2];
            auto out_w    = out_lens[3];

            auto in   = input.get_shape().lens();
            auto in_n = in[0];
            auto in_c = in[1];
            auto in_h = in[2];
            auto in_w = in[3];

            auto wei   = weights.get_shape().lens();
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];

            par_dfor(in_n, wei_c)([&](std::size_t o, std::size_t k) {

                dfor(in_c, in_h, in_w, wei_h, wei_w)(
                    [&](std::size_t w, std::size_t i, std::size_t j, std::size_t x, std::size_t y) {
                        const int start_x = i * op.stride[0] - op.padding[0];
                        const int start_y = j * op.stride[1] - op.padding[1];
                        const int out_x   = start_x + x * op.dilation[0];
                        const int out_y   = start_y + y * op.dilation[1];

                        const auto group_id = w / (wei_n / op.group);
                        const auto in_ch    = group_id * wei_c + k;

                        if(out_x >= 0 && out_x < out_h && out_y >= 0 && out_y < out_w)
                        {
                            output(o, in_ch, out_x, out_y) +=
                                input(o, w, i, j) * weights(w, k, x, y);
                        }
                    });
            });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
288
289
struct cpu_im2col
{
290
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
291

292
293
294
295
296
297
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
298
299
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
300

wsttiger's avatar
wsttiger committed
301
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
302
    {
Scott Thornton's avatar
Scott Thornton committed
303
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
304
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
305
306
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
307
308
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
309
310
311
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
312
313
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
314
315
316
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
317
318
            long kdiv2_h = long(kernel_h) / 2;
            long kdiv2_w = long(kernel_w) / 2;
Scott Thornton's avatar
Scott Thornton committed
319
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
320
321
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
322
            // account for padding for the starting position of the input pixels
Paul's avatar
Paul committed
323
            long iinput = kdiv2_h - long(pad_h);
wsttiger's avatar
wsttiger committed
324
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
325
326
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
Paul's avatar
Paul committed
327
                long jinput = kdiv2_w - long(pad_w);
Scott Thornton's avatar
Scott Thornton committed
328
329
330
331
332
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
333
334
335
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
336
337
                        auto idx    = iinput + long(koffset) - kdiv2_h;
                        auto jdx    = jinput + long(loffset) - kdiv2_w;
wsttiger's avatar
wsttiger committed
338
339
340
341
342
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
343
344
                }
            }
Scott Thornton's avatar
Scott Thornton committed
345
        });
Scott Thornton's avatar
Scott Thornton committed
346
347
348
349
        return result;
    }
};

Paul's avatar
Paul committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
377
    op::pooling op;
Paul's avatar
Paul committed
378

379
380
381
382
383
384
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
385
    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
386
387
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
388
389
390
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
            using type   = typename decltype(output)::value_type;
            auto in_s    = input.get_shape();
            auto in_lens = in_s.lens();
            std::vector<std::size_t> vec_len(in_lens.begin() + 2, in_lens.end());

            par_for(output_shape.elements(), [&](auto i) {
                auto idx_o = output_shape.multi(i);
                auto n_dim = idx_o.size();
                std::vector<std::size_t> win_start;
                std::vector<std::size_t> win_size;
                for(std::size_t dim = 2; dim < n_dim; ++dim)
                {
                    auto d_2  = dim - 2;
                    int start = static_cast<int>(idx_o[dim] * op.stride[d_2]) -
                                static_cast<int>(op.padding[d_2]);
                    int end = std::min(start + op.lengths[d_2], in_lens[dim]);
                    start   = std::max(start, 0);
                    win_start.push_back(start);
                    win_size.push_back(end - start);
                }

                shape win_shape{output_shape.type(), win_size};
                auto pool_size = win_shape.elements();
                double acc     = Op::start();
                shape_for_each(win_shape, [&](auto idx_w) {
                    auto idx = idx_o;
                    std::transform(idx_w.begin(),
                                   idx_w.end(),
                                   win_start.begin(),
                                   idx.begin() + 2,
                                   [](auto ii, auto jj) { return ii + jj; });
                    if(std::all_of(idx.begin() + 2, idx.end(), [&](auto ii) { return ii >= 0; }) and
                       idx < in_lens)
                    {
                        acc = Op::apply(acc, input[in_s.index(idx)]);
                    }
Paul's avatar
Paul committed
427
                });
428
429
430

                output[i] = type(Op::final(acc, pool_size));
            });
Paul's avatar
Paul committed
431
        });
432

Paul's avatar
Paul committed
433
434
435
436
        return result;
    }
};

437
struct cpu_op
Paul's avatar
Paul committed
438
{
439
440
    operation op;
    std::string name() const { return "cpu::" + op.name(); }
Paul's avatar
Paul committed
441
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
442
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
443
    {
Paul's avatar
Paul committed
444
        return op.compute(output_shape, args);
Paul's avatar
Paul committed
445
    }
Paul's avatar
Paul committed
446
    friend bool operator==(const cpu_op& x, const cpu_op& y) { return x.op == y.op; }
447
    friend bool operator==(const cpu_op& x, const operation& y)
Paul's avatar
Paul committed
448
    {
449
450
451
        if(x.name() != y.name())
            return false;
        return x == any_cast<cpu_op>(y);
Paul's avatar
Paul committed
452
    }
Paul's avatar
Paul committed
453
    friend bool operator==(const operation& x, const cpu_op& y) { return y == x; }
Paul's avatar
Paul committed
454
455
};

Khalique's avatar
Khalique committed
456
struct cpu_pad
457
{
Khalique's avatar
Khalique committed
458
    op::pad op;
459
460
461
462
463
464
465

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
466
    std::string name() const { return "cpu::contiguous"; }
467
468
469
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
470
        assert(output_shape.standard());
471
        argument result{output_shape};
472
473
474
475
        result.visit([&](auto output) {
            using type = typename decltype(output)::value_type;
            std::fill(output.begin(), output.end(), pad_clamp<type>(op.value));
        });
Khalique's avatar
Khalique committed
476
477

        visit_all(result, args[0])([&](auto output, auto input) {
478
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
479
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
480
481
482
483
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
484
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
485
            });
Khalique's avatar
Khalique committed
486
487
        });

488
489
490
491
        return result;
    }
};

Paul's avatar
Paul committed
492
493
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
494
    op::dot op;
495
496
497
498
499
500

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
Shucai Xiao's avatar
Shucai Xiao committed
501
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
502
503
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
504
505
506
507
508
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
509
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
510
    }
Paul's avatar
Paul committed
511

Paul's avatar
Paul committed
512
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
513
514
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
515
        // 3 inputs, it is alpha * A * B + beta * C, then
516
        // A and B are matrices, and C is of the same shape as A * B
Shucai Xiao's avatar
Shucai Xiao committed
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
539
540
541
542
        return result;
    }
};

543
544
545
struct cpu_quant_gemm
{
    op::quant_dot op;
546
547
548
549
550
551
552

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
    std::string name() const { return "cpu::quant_dot"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
        return op.compute_shape(inputs);
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrices, and C is of the same shape to A * B

        // first, convert the args[0] and args[1] from int8_t to int32_t
        argument arg_0{{shape::int32_type, {args.at(0).get_shape().lens()}}};
        argument arg_1{{shape::int32_type, {args.at(1).get_shape().lens()}}};
        arg_0.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
574
575
            args.at(0).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
576
577
578
        });

        arg_1.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
579
580
            args.at(1).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
        });

        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, arg_0, arg_1, op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
603
        migemm(result, arg_0, arg_1, op.alpha, int32_t{0});
604
605
606
607
608

        return result;
    }
};

Khalique's avatar
Khalique committed
609
610
611
612
613
614
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
615
        auto a = op.alpha;
Khalique's avatar
Khalique committed
616
617
618
619
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
620
621
622
623
624
625
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
626
        auto a = op.alpha;
Khalique's avatar
Khalique committed
627
628
629
630
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
631
632
633
634
template <typename Op>
struct cpu_unary
{
    Op op;
635
636
637
638
639
640

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
641
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
642
    shape compute_shape(const std::vector<shape>& inputs) const
643
    {
Shucai Xiao's avatar
Shucai Xiao committed
644
645
        check_shapes{inputs}.has(1);
        auto s = inputs.at(0);
646
        return {s.type(), s.lens()};
647
648
    }

Paul's avatar
Paul committed
649
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
650
651
    {
        argument result{output_shape};
652
653
654
        visit_all(result, args[0])([&](auto output, auto input) {
            assert(input.get_shape().standard());
            std::transform(input.begin(), input.end(), output.begin(), op.fcn());
Paul's avatar
Paul committed
655
        });
656

Paul's avatar
Paul committed
657
658
659
660
        return result;
    }
};

661
template <class Op>
Khalique's avatar
Khalique committed
662
struct cpu_softmax
Paul's avatar
Paul committed
663
{
664
    Op op;
Khalique's avatar
Khalique committed
665
666
667
668
669
670
671

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

672
    std::string name() const { return "cpu::" + op.name(); }
Khalique's avatar
Khalique committed
673
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
674
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
675
676
    {
        argument result{output_shape};
677
678
679
680
        auto batch_lens    = output_shape.lens();
        int64_t tuned_axis = (op.axis < 0) ? op.axis + args[0].get_shape().lens().size() : op.axis;
        std::size_t n_dims = batch_lens[tuned_axis];
        batch_lens[tuned_axis] = 1;
681
682
        shape batch_shape{shape::int32_type, batch_lens};

Paul's avatar
Paul committed
683
684
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
685
686
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
687
688
            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            par_for(batch_shape.elements(), [&](auto i) {
689
                auto idx = batch_shape.multi(i);
Shucai Xiao's avatar
Shucai Xiao committed
690
                for(std::size_t j = 0; j < n_dims; ++j)
691
                {
692
693
                    idx[tuned_axis] = j;
                    batch_max[i]    = std::max(batch_max[i], input(idx.begin(), idx.end()));
694
                }
Khalique's avatar
Khalique committed
695

Shucai Xiao's avatar
Shucai Xiao committed
696
                for(std::size_t j = 0; j < n_dims; ++j)
697
                {
698
                    idx[tuned_axis]   = j;
Shucai Xiao's avatar
Shucai Xiao committed
699
700
                    std::size_t index = output_shape.index(idx);
                    output[index]     = std::exp(input[index] - batch_max[i]);
701
                }
Khalique's avatar
Khalique committed
702

Shucai Xiao's avatar
Shucai Xiao committed
703
                for(std::size_t j = 0; j < n_dims; ++j)
704
                {
705
                    idx[tuned_axis] = j;
706
707
                    batch_sum[i] += output(idx.begin(), idx.end());
                }
Khalique's avatar
Khalique committed
708

Shucai Xiao's avatar
Shucai Xiao committed
709
                for(std::size_t j = 0; j < n_dims; ++j)
710
                {
711
                    idx[tuned_axis] = j;
712
713
                    output(idx.begin(), idx.end()) =
                        op.output()(output(idx.begin(), idx.end()), batch_sum[i]);
714
                }
Shucai Xiao's avatar
Shucai Xiao committed
715
716
717
718
719
720
721
            });
        });

        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
struct cpu_rnn_var_sl_last_output
{
    op::rnn_var_sl_last_output op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::rnn_var_sl_last_output"; }

    shape compute_shape(std::vector<shape> inputs) const
    {
        return op.compute_shape(std::move(inputs));
    }

    argument compute(const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto out_comp_lens = args[0].get_shape().lens();
        out_comp_lens[0]   = 1;
        shape out_comp_s{output_shape.type(), out_comp_lens};

        visit_all(result, args[0])([&](auto output, auto input) {
            args[1].visit([&](auto seq_lens) {
                par_for(output_shape.elements(), [&](auto i) {
                    auto idx = out_comp_s.multi(i);
                    auto b   = idx[2];
                    if(op.direction == op::rnn_direction::reverse or idx[1] == 1)
                    {
                        idx[0] = 0;
                    }
                    else
                    {
                        idx[0] = seq_lens[b] - 1;
                    }
                    output[i] = input(idx.begin(), idx.end());
                });
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
Aditya Atluri's avatar
Aditya Atluri committed
787
        apply_map["batch_norm_inference"] =
788
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
789
        apply_map["convolution"] = extend_op<cpu_convolution<op::convolution>, op::convolution>();
kahmed10's avatar
kahmed10 committed
790
791
792
793
        apply_map["deconvolution"] =
            extend_op<cpu_deconvolution<op::deconvolution>, op::deconvolution>();
        apply_map["dot"]       = extend_op<cpu_gemm, op::dot>();
        apply_map["quant_dot"] = extend_op<cpu_quant_gemm, op::quant_dot>();
794
795
796
797
798
799
800
801
802
        apply_map["quant_convolution"] =
            extend_op<cpu_convolution<op::quant_convolution>, op::quant_convolution>();
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
        apply_map["im2col"]     = extend_op<cpu_im2col, op::im2col>();
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
        apply_map["logsoftmax"] = extend_op<cpu_softmax<op::logsoftmax>, op::logsoftmax>();
        apply_map["lrn"]        = extend_op<cpu_lrn, op::lrn>();
        apply_map["pad"]        = extend_op<cpu_pad, op::pad>();
        apply_map["softmax"]    = extend_op<cpu_softmax<op::softmax>, op::softmax>();
Shucai Xiao's avatar
Shucai Xiao committed
803
804
        apply_map["rnn_var_sl_last_output"] =
            extend_op<cpu_rnn_var_sl_last_output, op::rnn_var_sl_last_output>();
Paul's avatar
Paul committed
805
806
807
808
809
810
811
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
812
            if(it->name() == "pooling")
Paul's avatar
Paul committed
813
814
815
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
816
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
817
            {
Paul's avatar
Paul committed
818
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
819
            }
Paul's avatar
Paul committed
820
            else if(is_context_free(it->get_operator()))
821
822
823
            {
                apply_cpu_op(it);
            }
Paul's avatar
Paul committed
824
825
826
        }
    }

827
828
829
830
831
    void apply_cpu_op(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_op{ins->get_operator()}, ins->inputs());
    }

Paul's avatar
Paul committed
832
833
834
    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
835
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
836
837
838
839
840
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
841
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
842
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
843
844
845
846
    }

    void apply_pooling(instruction_ref ins)
    {
847
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
848
        if(op.mode == "max")
Paul's avatar
Paul committed
849
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
850
        else if(op.mode == "average")
Paul's avatar
Paul committed
851
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
852
853
854
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
855
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
856
857

} // namespace cpu
Paul's avatar
Paul committed
858
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
859
} // namespace migraphx