"...lm-evaluation-harness.git" did not exist on "c7572ba6df672006ffe193ef2f9ae29b80ed2933"
tf.cpp 41.5 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Khalique's avatar
Khalique committed
27
    using node_map      = std::unordered_map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
28
29
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
30

Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Khalique's avatar
Khalique committed
39
    std::vector<size_t> parse_axes(const attribute_map& attributes, const std::string& s) const
40
    {
41
42
43
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
44
        if(is_nhwc)
45
        {
Khalique's avatar
Khalique committed
46
47
48
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
                return parse_axis(axis);
            });
49
50
51
52
        }
        return axes;
    }

Khalique's avatar
Khalique committed
53
54
55
56
57
    template <class T>
    std::vector<T> parse_axes(std::vector<T> axes) const
    {
        if(is_nhwc)
        {
58
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
59
60
61
62
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
                           [&](size_t axis) { return parse_axis(axis); });
63
            return new_axes;
Khalique's avatar
Khalique committed
64
        }
65
        return axes;
Khalique's avatar
Khalique committed
66
67
    }

Khalique's avatar
Khalique committed
68
69
70
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
71
    template <class T>
72
    void reorder_data(std::vector<T>& prev_data) const
73
74
    {
        std::vector<T> new_data(prev_data.size());
75
        for(size_t i = 0; i < new_data.size(); i++)
76
        {
Khalique's avatar
Khalique committed
77
            auto new_idx         = parse_axis(i);
78
            new_data.at(new_idx) = prev_data.at(i);
79
        }
80
81
82
83
        prev_data = new_data;
    }

    template <class T>
Khalique's avatar
Khalique committed
84
    T parse_axis(const T& dim) const
85
    {
Khalique's avatar
Khalique committed
86
        T new_dim = dim;
87
88
89
90
        if(is_nhwc)
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
91
92
93
94
95
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
96
97
            }
        }
Khalique's avatar
Khalique committed
98
        return new_dim;
99
100
    }

101
102
103
104
105
106
107
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
108
109
110
111
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
112
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
113

114
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
115
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
116

117
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
118
119
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
        add_mem_op("ConcatV2", &tf_parser::parse_concat);
Khalique's avatar
Khalique committed
120
121
        add_mem_op("Const", &tf_parser::parse_constant);
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Khalique's avatar
Khalique committed
122
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
Khalique's avatar
Khalique committed
123
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
124
        add_mem_op("MatMul", &tf_parser::parse_matmul);
125
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
126
        add_mem_op("Mean", &tf_parser::parse_mean);
Khalique's avatar
Khalique committed
127
        add_mem_op("Pack", &tf_parser::parse_pack);
Khalique's avatar
Khalique committed
128
        add_mem_op("Pad", &tf_parser::parse_pad);
129
130
131
        add_mem_op("Reshape", &tf_parser::parse_reshape);
        add_mem_op("Softmax", &tf_parser::parse_softmax);
        add_mem_op("Squeeze", &tf_parser::parse_squeeze);
132
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
Khalique's avatar
Khalique committed
133
134
    }

135
136
137
138
139
140
141
142
143
144
145
146
147
    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

Khalique's avatar
Khalique committed
148
149
150
    template <class F>
    void add_mem_op(std::string name, F f)
    {
151
        add_op(name, [=](auto&&... xs) {
Khalique's avatar
Khalique committed
152
153
154
155
156
157
158
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
159
        add_op(name, [this, x](const attribute_map& attributes, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
160
161
            if(args.size() != 2)
                MIGRAPHX_THROW("binary operators should have 2 operands");
162
163
164
165
166
            auto l0 = args[1];
            if(contains(attributes, "data_format"))
            {
                if(is_nhwc)
                {
Khalique's avatar
Khalique committed
167
                    l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
168
169
170
                }
            }
            return add_broadcastable_binary_op(args[0], l0, x);
Khalique's avatar
Khalique committed
171
172
173
174
175
176
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
177
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
193
194
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
195
196
197
198
199

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

200
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
    }

    template <class T>
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
221
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
222
223
224
225
226
227
228
            return prog.add_instruction(x, args);
        });
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
229
230
231
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
232
233
234
235
236
237
238
239
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

240
    instruction_ref
Khalique's avatar
Khalique committed
241
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
242
    {
243
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
244
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
245
        return prog.add_instruction(op::add{}, args[0], l0);
246
247
    }

Khalique's avatar
Khalique committed
248
249
250
251
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
252
        size_t axis_idx = attributes.at("N").i();
Khalique's avatar
Khalique committed
253
        size_t axis     = parse_axis(args[axis_idx]->eval().at<int64_t>());
Khalique's avatar
Khalique committed
254
        op::concat op{axis};
255
        // return only first N arguments (assuming last index is the axis value)
Khalique's avatar
Khalique committed
256
        return prog.add_instruction(
257
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
258
259
260
261
262
263
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Khalique's avatar
Khalique committed
264
265
        literal v       = parse_tensor(attributes.at("value").tensor());
        auto l0         = prog.add_literal(v);
266
267
268
269
270
271
        size_t num_axes = l0->get_shape().lens().size();
        if(num_axes >= 4)
        {
            std::vector<int64_t> transpose_axes = get_axes(num_axes);
            reorder_data(transpose_axes);
            l0 = prog.add_instruction(op::transpose{transpose_axes}, l0);
Khalique's avatar
Khalique committed
272
        }
273
        return l0;
Khalique's avatar
Khalique committed
274
275
276
277
278
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
279
        op::convolution op;
Khalique's avatar
Khalique committed
280
281
        if(contains(attributes, "strides"))
        {
282
            std::vector<size_t> stride;
283
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
284
            reorder_data(stride);
285
286
            if(stride.size() != 4)
            {
287
                MIGRAPHX_THROW("strides should have 4 values");
288
            }
289
290
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
291
292
293
        }
        if(contains(attributes, "dilations"))
        {
294
            std::vector<size_t> dilation;
295
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
296
            reorder_data(dilation);
297
298
299
300
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
301
302
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
303
        }
Khalique's avatar
Khalique committed
304
        auto weights = args[1];
305
        // check if weights are from a constant
Khalique's avatar
Khalique committed
306
307

        if(weights->name() != "@param")
308
        {
Khalique's avatar
Khalique committed
309
310
311
312
313
314
315
316
            if(is_nhwc)
            {
                weights = prog.add_instruction(op::transpose{{1, 3, 0, 2}}, args[1]);
            }
            else
            {
                weights = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
            }
317
        }
Khalique's avatar
Khalique committed
318

319
320
        if(contains(attributes, "padding"))
        {
Khalique's avatar
Khalique committed
321
            const std::string& pad_mode = attributes.at("padding").s();
322
323
            if(pad_mode.find("SAME") != std::string::npos)
            {
324
                op.padding_mode = op::padding_mode_t::same;
325
326
327
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
328
                op.padding_mode = op::padding_mode_t::valid;
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
            }
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
            {
                std::vector<size_t> padding;
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }

Khalique's avatar
Khalique committed
347
        return prog.add_instruction(op, {args[0], weights});
Khalique's avatar
Khalique committed
348
349
    }

Khalique's avatar
Khalique committed
350
351
352
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
353
354
355
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
356
        op.group            = num_channels;
Khalique's avatar
Khalique committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }
        if(contains(attributes, "strides"))
        {
            std::vector<size_t> stride;
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
            reorder_data(stride);
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
        }
        auto weights = args[1];
        // check if weights are from a constant
        if(weights->name() != "@param")
        {
            if(is_nhwc)
            {
                weights = prog.add_instruction(op::transpose{{1, 3, 0, 2}}, args[1]);
            }
            else
            {
                weights = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
Khalique's avatar
Khalique committed
388
            }
Khalique's avatar
Khalique committed
389
        }
Khalique's avatar
Khalique committed
390

Khalique's avatar
Khalique committed
391
392
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
393
394
395
396

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
397
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
398
399
400
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
401
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
402
403
        auto cweights    = prog.add_instruction(op::contiguous{}, weights);
        auto new_weights = prog.add_instruction(op::reshape{new_weights_shape}, cweights);
Khalique's avatar
Khalique committed
404

Khalique's avatar
Khalique committed
405
406
407
        return prog.add_instruction(op, {args[0], new_weights});
    }

Khalique's avatar
Khalique committed
408
409
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
410
411
412
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
413

414
415
416
417
418
419
420
421
422
423
424
425
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
            transb = attributes.at("transpose_a").b();
        }

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
426
        std::iter_swap(perm.end() - 1, perm.end() - 2);
427
428
429
430
431
432
433

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
434
435
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
436
    {
Khalique's avatar
Khalique committed
437
        auto axes      = parse_axes(args[1]->eval().get<int32_t>().to_vector());
Khalique's avatar
Khalique committed
438
        bool keep_dims = attributes.at("keep_dims").b();
Khalique's avatar
Khalique committed
439
        std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
440
        // check if conditions for GlobalAvgPool are met
Khalique's avatar
Khalique committed
441
442
        auto lens = args[0]->get_shape().lens();
        if(axes == hw_axes and lens.size() == 4)
Khalique's avatar
Khalique committed
443
444
        {
            op::pooling op{"average"};
Khalique's avatar
Khalique committed
445
446
            op.lengths[0] = lens[2];
            op.lengths[1] = lens[3];
Khalique's avatar
Khalique committed
447
448
449
450
451
            auto l0       = prog.add_instruction(op, args.front());
            if(keep_dims)
                return l0;
            return prog.add_instruction(
                op::squeeze{std::vector<int64_t>(hw_axes.begin(), hw_axes.end())}, l0);
Khalique's avatar
Khalique committed
452
453
454
455
        }
        MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
    }

Khalique's avatar
Khalique committed
456
457
458
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
459
460
461
462
463
464
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
465
466
467
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
468
469
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
470
471
472
473
474
        }
        // check if input arg needs axis to be converted to NCHW
        if(input_size >= 4)
            axis = parse_axis(axis);

Khalique's avatar
Khalique committed
475
476
477
478
479
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Khalique's avatar
Khalique committed
480
481
482
        return prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args);
    }

Khalique's avatar
Khalique committed
483
484
485
486
487
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
488
489
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
490
491
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
492
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
493
        {
Khalique's avatar
Khalique committed
494
495
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
496
497
498
499
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
500
501
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
502
        {
Khalique's avatar
Khalique committed
503
504
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
505
506
507
508
509
        }
        op.pads = pads;
        return prog.add_instruction(op, args.front());
    }

510
511
512
513
514
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
515

516
517
518
519
520
521
522
523
524
525
526
527
528
529
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
        if(contains(attributes, "strides"))
        {
530
            std::vector<size_t> stride;
531
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
532
            reorder_data(stride);
533
534
535
536
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
537
538
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
539
540
541
        }
        if(contains(attributes, "ksize"))
        {
542
            std::vector<size_t> ksize;
543
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
544
            reorder_data(ksize);
545
546
547
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
548
            }
549
550
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
551
        }
552
        return prog.add_instruction(op, args[0]);
553
    }
Khalique's avatar
Khalique committed
554

555
    instruction_ref
Khalique's avatar
Khalique committed
556
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
557
558
559
560
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
561
        auto s = args[1]->eval();
562
563
564
565
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        return prog.add_instruction(op, args[0]);
    }

Khalique's avatar
Khalique committed
566
567
568
569
570
571
572
573
574
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
575
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
576
577
578
        }
    }

579
580
581
582
583
584
585
586
587
588
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

Khalique's avatar
Khalique committed
589
590
591
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
592
593
    {
        op::squeeze op;
594
        auto axes = parse_axes(attributes, "squeeze_dims");
595
        copy(axes, std::back_inserter(op.axes));
596
        auto args0_dims = args[0]->get_shape().lens();
597
598
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
599
            for(size_t i = 0; i < args0_dims.size(); i++)
600
            {
601
                if(args0_dims.at(i) == 1)
602
603
604
605
                {
                    op.axes.push_back(i);
                }
            }
606
        }
607
        return prog.add_instruction(op, args[0]);
608
609
    }

Khalique's avatar
Khalique committed
610
611
612
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
613
614
    {
        op::slice op;
Khalique's avatar
Khalique committed
615
616
617
618
619
620
621
622
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto ends       = args[2]->eval().get<int32_t>().to_vector();
        size_t num_axes = args[0]->get_shape().lens().size();
        if(num_axes >= 4)
        {
            reorder_data(starts);
            reorder_data(ends);
        }
623

Khalique's avatar
Khalique committed
624
625
626
627
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
628
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
629
        uint32_t bitwise_compare  = 1;
630
631
632
        std::vector<int64_t> squeeze_axes;

        if(contains(attributes, "shrink_axis_mask"))
633
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
634

Khalique's avatar
Khalique committed
635
        for(size_t i = 0; i < num_axes; i++)
636
        {
637
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
638
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
639
640
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
641
642
643
644
645
        if(num_axes >= 4)
        {
            squeeze_axes = parse_axes(squeeze_axes);
        }

646
647
648
649
        auto l0 = prog.add_instruction(op, args[0]);
        return prog.add_instruction(op::squeeze{squeeze_axes}, l0);
    }

Khalique's avatar
Khalique committed
650
651
652
653
654
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
655
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
656
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
657
658
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
659
            if(is_nhwc and dims.size() >= 4)
660
            {
661
                reorder_data(dims);
662
            }
Khalique's avatar
Khalique committed
663
664
            shape s            = shape{shape_type, dims};
            instructions[name] = prog.add_parameter(name, s);
Khalique's avatar
Khalique committed
665
666
667
        }
        for(auto&& p : nodes)
        {
668
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
695
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
696
697
698
699
700
701
702
703
704
705
706
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
707
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
708
709
710
711
712
713
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
714
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
715

Khalique's avatar
Khalique committed
716
717
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
777
778
779
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
807
808
809
810
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
811
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
812
813
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
814
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
815
816
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
817
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
818
819
820
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
821
822
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
823
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
824
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
825
            case tensorflow::DataType::DT_UINT16:
826
                return literal{{shape::uint16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
827
            case tensorflow::DataType::DT_INT16:
828
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
829
830
831
832
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
833
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
834
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
835
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
836
837
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
838
839
840
841
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
873
874
875
876
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
877
878
879
880
881
882
883
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
884
885
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
886
887
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
888
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
889
        case tensorflow::DataType::DT_UINT16:
890
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
891
        case tensorflow::DataType::DT_INT16:
892
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
893
        case tensorflow::DataType::DT_INT32:
894
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
895
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
896
897
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
898
899
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
900
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
901
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
902
        {
903
904
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
905
906
907
908
909
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
910
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
911
        }
Khalique's avatar
Khalique committed
912
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
913
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
914
915
916
917
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
949
950
951
952
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
953
954
955
956
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

957
    template <class T>
Khalique's avatar
Khalique committed
958
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
959
                                        const size_t& shape_size)
960
961
962
963
964
965
966
967
968
969
970
971
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
972
973
974
975
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
976
977
978
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
979
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
980
981
        return dims;
    }
982
983

    template <class T>
Khalique's avatar
Khalique committed
984
    static literal
985
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
986
    {
Khalique's avatar
Khalique committed
987
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
988
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
989
            return literal{{shape_type}, data};
990
991
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx