lowering.cpp 27.3 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
Paul's avatar
Paul committed
5
6
#include <migraphx/op/batch_norm.hpp>
#include <migraphx/op/convolution.hpp>
kahmed10's avatar
kahmed10 committed
7
#include <migraphx/op/deconvolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
8
#include <migraphx/op/quant_convolution.hpp>
Paul's avatar
Paul committed
9
#include <migraphx/op/dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
10
#include <migraphx/op/quant_dot.hpp>
Paul's avatar
Paul committed
11
12
13
14
15
16
17
18
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/logsoftmax.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/softmax.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
19
20
#include <migraphx/op/argmax.hpp>
#include <migraphx/op/argmin.hpp>
Paul's avatar
Paul committed
21
22
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
23
#include <migraphx/par_dfor.hpp>
24
#include <migraphx/clamp.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
26
#include <unordered_map>
Paul's avatar
Paul committed
27
#include <utility>
Paul's avatar
Paul committed
28

Paul's avatar
Paul committed
29
namespace migraphx {
Paul's avatar
Paul committed
30
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
31
32
33
34
35
36
37
38
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
39
40
41
42
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
43
44
45
46
{
    return x;
}

47
48
49
50
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
51
52
53
54
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
55
// args[4] -> bias
56
57
58
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
59
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
60
61
62
63
64
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
65
    op::batch_norm_inference op;
66

67
68
69
70
71
72
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

73
74
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
75
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
76

Paul's avatar
Paul committed
77
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
78
    {
79
80
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
81
82
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
83
84
85
86
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
87

88
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
89
90
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
91
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
92

93
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
94
95
96
97
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
98
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
99
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
100
101
102
103
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
104
105
                        });
                });
106
107
        }

108
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
109
        {
110
111
112
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
113
                    par_dfor(num_batch, num_channels, image_height, image_width)(
114
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
115
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
116
117
118
119
120
121
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
122
        }
123
124
125
126
127

        return output;
    }
};

Khalique's avatar
Khalique committed
128
struct cpu_lrn
Khalique's avatar
Khalique committed
129
{
Khalique's avatar
Khalique committed
130
    op::lrn op;
Khalique's avatar
Khalique committed
131

132
133
134
135
136
137
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
138
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
139
140
141
142
143
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
144
145
146
147
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
148
            float alphaoverarea = op.alpha / float(op.size);
149
150
            int radius_lower    = (op.size - 1) / 2;
            int radius_upper    = op.size / 2 + 1;
Khalique's avatar
Khalique committed
151

152
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
153
                float scale = 0;
Khalique's avatar
Khalique committed
154
                dfor(channels)([&](int c) {
155
156
                    auto start = (c - radius_lower) < 0 ? 0 : (c - radius_lower);
                    auto end   = (c + radius_upper) > channels ? channels : (c + radius_upper);
Khalique's avatar
Khalique committed
157
158
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
159
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
160
161
162
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
163
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
164
165
166
167
168
169
170
171
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

172
template <class Op>
Paul's avatar
Paul committed
173
174
struct cpu_convolution
{
175
    Op op;
176

177
178
179
180
181
182
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

183
    std::string name() const { return "cpu::" + op.name(); }
184
185
186
187
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        result.visit([&](auto output) {
            using type = typename decltype(output)::value_type;
            visit_all(args[0], args[1])([&](auto input, auto weights) {
                auto in   = input.get_shape().lens();
                auto in_h = in[2];
                auto in_w = in[3];

                auto wei   = weights.get_shape().lens();
                auto wei_n = wei[0];
                auto wei_c = wei[1];
                auto wei_h = wei[2];
                auto wei_w = wei[3];

                par_dfor(output_shape.lens()[0],
                         output_shape.lens()[1],
                         output_shape.lens()[2],
                         output_shape.lens()[3])(
                    [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                        const auto start_x  = i * op.stride[0] - op.padding[0];
                        const auto start_y  = j * op.stride[1] - op.padding[1];
                        const auto group_id = w / (wei_n / op.group);

                        type acc = type{0};
                        dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                            const auto in_x  = start_x + x;
                            const auto in_y  = start_y + y;
                            const auto in_ch = group_id * wei_c + k;
                            if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                                acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
                        });
                        output(o, w, i, j) = acc;
219
                    });
220
            });
221
222
223
224
225
        });
        return result;
    }
};

kahmed10's avatar
kahmed10 committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
template <class Op>
struct cpu_deconvolution
{
    Op op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::" + op.name(); }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            using type = typename decltype(output)::value_type;

            std::fill(output.begin(), output.end(), type{0});

            auto out_lens = output_shape.lens();
            auto out_h    = out_lens[2];
            auto out_w    = out_lens[3];

            auto in   = input.get_shape().lens();
            auto in_n = in[0];
            auto in_c = in[1];
            auto in_h = in[2];
            auto in_w = in[3];

            auto wei   = weights.get_shape().lens();
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];

            par_dfor(in_n, wei_c)([&](std::size_t o, std::size_t k) {

                dfor(in_c, in_h, in_w, wei_h, wei_w)(
                    [&](std::size_t w, std::size_t i, std::size_t j, std::size_t x, std::size_t y) {
                        const int start_x = i * op.stride[0] - op.padding[0];
                        const int start_y = j * op.stride[1] - op.padding[1];
                        const int out_x   = start_x + x * op.dilation[0];
                        const int out_y   = start_y + y * op.dilation[1];

                        const auto group_id = w / (wei_n / op.group);
                        const auto in_ch    = group_id * wei_c + k;

                        if(out_x >= 0 && out_x < out_h && out_y >= 0 && out_y < out_w)
                        {
                            output(o, in_ch, out_x, out_y) +=
                                input(o, w, i, j) * weights(w, k, x, y);
                        }
                    });
            });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
287
288
struct cpu_im2col
{
289
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
290

291
292
293
294
295
296
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
297
298
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
299

wsttiger's avatar
wsttiger committed
300
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
301
    {
Scott Thornton's avatar
Scott Thornton committed
302
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
303
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
304
305
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
306
307
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
308
309
310
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
311
312
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
313
314
315
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
316
317
            long kdiv2_h = long(kernel_h) / 2;
            long kdiv2_w = long(kernel_w) / 2;
Scott Thornton's avatar
Scott Thornton committed
318
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
319
320
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
321
            // account for padding for the starting position of the input pixels
Paul's avatar
Paul committed
322
            long iinput = kdiv2_h - long(pad_h);
wsttiger's avatar
wsttiger committed
323
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
324
325
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
Paul's avatar
Paul committed
326
                long jinput = kdiv2_w - long(pad_w);
Scott Thornton's avatar
Scott Thornton committed
327
328
329
330
331
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
332
333
334
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
335
336
                        auto idx    = iinput + long(koffset) - kdiv2_h;
                        auto jdx    = jinput + long(loffset) - kdiv2_w;
wsttiger's avatar
wsttiger committed
337
338
339
340
341
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
342
343
                }
            }
Scott Thornton's avatar
Scott Thornton committed
344
        });
Scott Thornton's avatar
Scott Thornton committed
345
346
347
348
        return result;
    }
};

Paul's avatar
Paul committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
376
    op::pooling op;
Paul's avatar
Paul committed
377

378
379
380
381
382
383
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
384
    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
385
386
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
387
388
389
390
391
392
393
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
394
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
395
396
397
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

428
struct cpu_op
Paul's avatar
Paul committed
429
{
430
431
    operation op;
    std::string name() const { return "cpu::" + op.name(); }
Paul's avatar
Paul committed
432
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
433
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
434
    {
Paul's avatar
Paul committed
435
        return op.compute(output_shape, args);
Paul's avatar
Paul committed
436
    }
Paul's avatar
Paul committed
437
    friend bool operator==(const cpu_op& x, const cpu_op& y) { return x.op == y.op; }
438
    friend bool operator==(const cpu_op& x, const operation& y)
Paul's avatar
Paul committed
439
    {
440
441
442
        if(x.name() != y.name())
            return false;
        return x == any_cast<cpu_op>(y);
Paul's avatar
Paul committed
443
    }
Paul's avatar
Paul committed
444
    friend bool operator==(const operation& x, const cpu_op& y) { return y == x; }
Paul's avatar
Paul committed
445
446
};

Khalique's avatar
Khalique committed
447
struct cpu_pad
448
{
Khalique's avatar
Khalique committed
449
    op::pad op;
450
451
452
453
454
455
456

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
457
    std::string name() const { return "cpu::contiguous"; }
458
459
460
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
461
        assert(output_shape.standard());
462
        argument result{output_shape};
463
464
465
466
        result.visit([&](auto output) {
            using type = typename decltype(output)::value_type;
            std::fill(output.begin(), output.end(), pad_clamp<type>(op.value));
        });
Khalique's avatar
Khalique committed
467
468

        visit_all(result, args[0])([&](auto output, auto input) {
469
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
470
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
471
472
473
474
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
475
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
476
            });
Khalique's avatar
Khalique committed
477
478
        });

479
480
481
482
        return result;
    }
};

Paul's avatar
Paul committed
483
484
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
485
    op::dot op;
486
487
488
489
490
491

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
Shucai Xiao's avatar
Shucai Xiao committed
492
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
493
494
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
495
496
497
498
499
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
500
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
501
    }
Paul's avatar
Paul committed
502

Paul's avatar
Paul committed
503
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
504
505
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
506
        // 3 inputs, it is alpha * A * B + beta * C, then
507
        // A and B are matrices, and C is of the same shape as A * B
Shucai Xiao's avatar
Shucai Xiao committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
530
531
532
533
        return result;
    }
};

534
535
536
struct cpu_quant_gemm
{
    op::quant_dot op;
537
538
539
540
541
542
543

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    std::string name() const { return "cpu::quant_dot"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
        return op.compute_shape(inputs);
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrices, and C is of the same shape to A * B

        // first, convert the args[0] and args[1] from int8_t to int32_t
        argument arg_0{{shape::int32_type, {args.at(0).get_shape().lens()}}};
        argument arg_1{{shape::int32_type, {args.at(1).get_shape().lens()}}};
        arg_0.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
565
566
            args.at(0).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
567
568
569
        });

        arg_1.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
570
571
            args.at(1).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
        });

        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, arg_0, arg_1, op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
594
        migemm(result, arg_0, arg_1, op.alpha, int32_t{0});
595
596
597
598
599

        return result;
    }
};

Khalique's avatar
Khalique committed
600
601
602
603
604
605
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
606
        auto a = op.alpha;
Khalique's avatar
Khalique committed
607
608
609
610
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
611
612
613
614
615
616
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
617
        auto a = op.alpha;
Khalique's avatar
Khalique committed
618
619
620
621
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
622
623
624
625
template <typename Op>
struct cpu_unary
{
    Op op;
626
627
628
629
630
631

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
632
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
633
    shape compute_shape(const std::vector<shape>& inputs) const
634
    {
Shucai Xiao's avatar
Shucai Xiao committed
635
636
        check_shapes{inputs}.has(1);
        auto s = inputs.at(0);
637
        return {s.type(), s.lens()};
638
639
    }

Paul's avatar
Paul committed
640
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
641
642
    {
        argument result{output_shape};
643
644
645
        visit_all(result, args[0])([&](auto output, auto input) {
            assert(input.get_shape().standard());
            std::transform(input.begin(), input.end(), output.begin(), op.fcn());
Paul's avatar
Paul committed
646
        });
647

Paul's avatar
Paul committed
648
649
650
651
        return result;
    }
};

652
template <class Op>
Khalique's avatar
Khalique committed
653
struct cpu_softmax
Paul's avatar
Paul committed
654
{
655
    Op op;
Khalique's avatar
Khalique committed
656
657
658
659
660
661
662

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

663
    std::string name() const { return "cpu::" + op.name(); }
Khalique's avatar
Khalique committed
664
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
665
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
666
667
    {
        argument result{output_shape};
668
669
670
671
        auto batch_lens    = output_shape.lens();
        int64_t tuned_axis = (op.axis < 0) ? op.axis + args[0].get_shape().lens().size() : op.axis;
        std::size_t n_dims = batch_lens[tuned_axis];
        batch_lens[tuned_axis] = 1;
672
673
        shape batch_shape{shape::int32_type, batch_lens};

Paul's avatar
Paul committed
674
675
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
676
677
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
678
679
            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            par_for(batch_shape.elements(), [&](auto i) {
680
                auto idx = batch_shape.multi(i);
Shucai Xiao's avatar
Shucai Xiao committed
681
                for(std::size_t j = 0; j < n_dims; ++j)
682
                {
683
684
                    idx[tuned_axis] = j;
                    batch_max[i]    = std::max(batch_max[i], input(idx.begin(), idx.end()));
685
                }
Khalique's avatar
Khalique committed
686

Shucai Xiao's avatar
Shucai Xiao committed
687
                for(std::size_t j = 0; j < n_dims; ++j)
688
                {
689
                    idx[tuned_axis]   = j;
Shucai Xiao's avatar
Shucai Xiao committed
690
691
                    std::size_t index = output_shape.index(idx);
                    output[index]     = std::exp(input[index] - batch_max[i]);
692
                }
Khalique's avatar
Khalique committed
693

Shucai Xiao's avatar
Shucai Xiao committed
694
                for(std::size_t j = 0; j < n_dims; ++j)
695
                {
696
                    idx[tuned_axis] = j;
697
698
                    batch_sum[i] += output(idx.begin(), idx.end());
                }
Khalique's avatar
Khalique committed
699

Shucai Xiao's avatar
Shucai Xiao committed
700
                for(std::size_t j = 0; j < n_dims; ++j)
701
                {
702
                    idx[tuned_axis] = j;
703
704
                    output(idx.begin(), idx.end()) =
                        op.output()(output(idx.begin(), idx.end()), batch_sum[i]);
705
                }
Shucai Xiao's avatar
Shucai Xiao committed
706
707
708
709
710
711
712
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
Aditya Atluri's avatar
Aditya Atluri committed
732
        apply_map["batch_norm_inference"] =
733
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
734
        apply_map["convolution"] = extend_op<cpu_convolution<op::convolution>, op::convolution>();
kahmed10's avatar
kahmed10 committed
735
736
737
738
        apply_map["deconvolution"] =
            extend_op<cpu_deconvolution<op::deconvolution>, op::deconvolution>();
        apply_map["dot"]       = extend_op<cpu_gemm, op::dot>();
        apply_map["quant_dot"] = extend_op<cpu_quant_gemm, op::quant_dot>();
739
740
741
742
743
744
745
746
747
        apply_map["quant_convolution"] =
            extend_op<cpu_convolution<op::quant_convolution>, op::quant_convolution>();
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
        apply_map["im2col"]     = extend_op<cpu_im2col, op::im2col>();
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
        apply_map["logsoftmax"] = extend_op<cpu_softmax<op::logsoftmax>, op::logsoftmax>();
        apply_map["lrn"]        = extend_op<cpu_lrn, op::lrn>();
        apply_map["pad"]        = extend_op<cpu_pad, op::pad>();
        apply_map["softmax"]    = extend_op<cpu_softmax<op::softmax>, op::softmax>();
Paul's avatar
Paul committed
748
749
750
751
752
753
754
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
755
            if(it->name() == "pooling")
Paul's avatar
Paul committed
756
757
758
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
759
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
760
            {
Paul's avatar
Paul committed
761
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
762
            }
Paul's avatar
Paul committed
763
            else if(is_context_free(it->get_operator()))
764
765
766
            {
                apply_cpu_op(it);
            }
Paul's avatar
Paul committed
767
768
769
        }
    }

770
771
772
773
774
    void apply_cpu_op(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_op{ins->get_operator()}, ins->inputs());
    }

Paul's avatar
Paul committed
775
776
777
    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
778
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
779
780
781
782
783
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
784
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
785
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
786
787
788
789
    }

    void apply_pooling(instruction_ref ins)
    {
790
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
791
        if(op.mode == "max")
Paul's avatar
Paul committed
792
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
793
        else if(op.mode == "average")
Paul's avatar
Paul committed
794
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
795
796
797
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
798
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
799
800

} // namespace cpu
Paul's avatar
Paul committed
801
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
802
} // namespace migraphx