"src/tf/verify_tf.cpp" did not exist on "3b184cb84998e8371b391794b831c97ba1b7ef20"
tf.cpp 41.7 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Khalique's avatar
Khalique committed
27
    using node_map      = std::unordered_map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
28
29
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
30

Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Khalique's avatar
Khalique committed
39
    std::vector<size_t> parse_axes(const attribute_map& attributes, const std::string& s) const
40
    {
41
42
43
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
44
        if(is_nhwc)
45
        {
Khalique's avatar
Khalique committed
46
47
48
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
                return parse_axis(axis);
            });
49
50
51
52
        }
        return axes;
    }

Khalique's avatar
Khalique committed
53
54
55
56
57
    template <class T>
    std::vector<T> parse_axes(std::vector<T> axes) const
    {
        if(is_nhwc)
        {
58
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
59
60
61
62
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
                           [&](size_t axis) { return parse_axis(axis); });
63
            return new_axes;
Khalique's avatar
Khalique committed
64
        }
65
        return axes;
Khalique's avatar
Khalique committed
66
67
    }

Khalique's avatar
Khalique committed
68
69
70
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
71
    template <class T>
72
    void reorder_data(std::vector<T>& prev_data) const
73
74
    {
        std::vector<T> new_data(prev_data.size());
75
        for(size_t i = 0; i < new_data.size(); i++)
76
        {
Khalique's avatar
Khalique committed
77
            auto new_idx         = parse_axis(i);
78
            new_data.at(new_idx) = prev_data.at(i);
79
        }
80
81
82
83
        prev_data = new_data;
    }

    template <class T>
Khalique's avatar
Khalique committed
84
    T parse_axis(const T& dim) const
85
    {
Khalique's avatar
Khalique committed
86
        T new_dim = dim;
87
88
89
90
        if(is_nhwc)
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
91
92
93
94
95
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
96
97
            }
        }
Khalique's avatar
Khalique committed
98
        return new_dim;
99
100
    }

101
102
103
104
105
106
107
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
108
109
110
111
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
112
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
113

114
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
115
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
116

117
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
118
119
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
        add_mem_op("ConcatV2", &tf_parser::parse_concat);
Khalique's avatar
Khalique committed
120
121
        add_mem_op("Const", &tf_parser::parse_constant);
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Khalique's avatar
Khalique committed
122
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
Khalique's avatar
Khalique committed
123
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
124
        add_mem_op("MatMul", &tf_parser::parse_matmul);
125
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
126
        add_mem_op("Mean", &tf_parser::parse_mean);
Khalique's avatar
Khalique committed
127
        add_mem_op("Pack", &tf_parser::parse_pack);
Khalique's avatar
Khalique committed
128
        add_mem_op("Pad", &tf_parser::parse_pad);
129
130
131
        add_mem_op("Reshape", &tf_parser::parse_reshape);
        add_mem_op("Softmax", &tf_parser::parse_softmax);
        add_mem_op("Squeeze", &tf_parser::parse_squeeze);
132
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
Khalique's avatar
Khalique committed
133
134
    }

135
136
137
138
139
140
141
142
143
144
145
146
147
    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

Khalique's avatar
Khalique committed
148
149
150
    template <class F>
    void add_mem_op(std::string name, F f)
    {
151
        add_op(name, [=](auto&&... xs) {
Khalique's avatar
Khalique committed
152
153
154
155
156
157
158
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
159
        add_op(name, [this, x](const attribute_map& attributes, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
160
161
            if(args.size() != 2)
                MIGRAPHX_THROW("binary operators should have 2 operands");
162
163
164
165
166
            auto l0 = args[1];
            if(contains(attributes, "data_format"))
            {
                if(is_nhwc)
                {
Khalique's avatar
Khalique committed
167
                    l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
168
169
170
                }
            }
            return add_broadcastable_binary_op(args[0], l0, x);
Khalique's avatar
Khalique committed
171
172
173
174
175
176
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
177
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
193
194
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
195
196
197
198
199

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

200
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
    }

    template <class T>
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
221
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
222
223
224
225
226
227
228
            return prog.add_instruction(x, args);
        });
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
229
230
231
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
232
233
234
235
236
237
238
239
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

240
    instruction_ref
Khalique's avatar
Khalique committed
241
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
242
    {
243
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
244
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
245
        return prog.add_instruction(op::add{}, args[0], l0);
246
247
    }

Khalique's avatar
Khalique committed
248
249
250
251
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
252
        size_t axis_idx = attributes.at("N").i();
Khalique's avatar
Khalique committed
253
        size_t axis     = parse_axis(args[axis_idx]->eval().at<int64_t>());
Khalique's avatar
Khalique committed
254
        op::concat op{axis};
255
        // return only first N arguments (assuming last index is the axis value)
Khalique's avatar
Khalique committed
256
        return prog.add_instruction(
257
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
258
259
260
261
262
263
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Khalique's avatar
Khalique committed
264
265
        literal v       = parse_tensor(attributes.at("value").tensor());
        auto l0         = prog.add_literal(v);
266
267
268
269
270
271
        size_t num_axes = l0->get_shape().lens().size();
        if(num_axes >= 4)
        {
            std::vector<int64_t> transpose_axes = get_axes(num_axes);
            reorder_data(transpose_axes);
            l0 = prog.add_instruction(op::transpose{transpose_axes}, l0);
Khalique's avatar
Khalique committed
272
        }
273
        return l0;
Khalique's avatar
Khalique committed
274
275
276
277
278
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
279
        op::convolution op;
Khalique's avatar
Khalique committed
280
281
        if(contains(attributes, "strides"))
        {
282
            std::vector<size_t> stride;
283
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
284
            reorder_data(stride);
285
286
            if(stride.size() != 4)
            {
287
                MIGRAPHX_THROW("strides should have 4 values");
288
            }
289
290
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
291
292
293
        }
        if(contains(attributes, "dilations"))
        {
294
            std::vector<size_t> dilation;
295
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
296
            reorder_data(dilation);
297
298
299
300
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
301
302
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
303
        }
Khalique's avatar
Khalique committed
304
        auto weights = args[1];
305
        // check if weights are from a constant
Khalique's avatar
Khalique committed
306
307

        if(weights->name() != "@param")
308
        {
Khalique's avatar
Khalique committed
309
310
311
312
313
314
315
316
            if(is_nhwc)
            {
                weights = prog.add_instruction(op::transpose{{1, 3, 0, 2}}, args[1]);
            }
            else
            {
                weights = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
            }
317
        }
Khalique's avatar
Khalique committed
318

319
320
        if(contains(attributes, "padding"))
        {
Khalique's avatar
Khalique committed
321
            const std::string& pad_mode     = attributes.at("padding").s();
322
            std::vector<size_t> weight_dims = weights->get_shape().lens();
Khalique's avatar
Khalique committed
323
324
            size_t weight_h                 = weight_dims[2];
            size_t weight_w                 = weight_dims[3];
325
326
            if(pad_mode.find("SAME") != std::string::npos)
            {
327
                op.padding_mode = op::padding_mode_t::same;
328
329
330
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
331
                op.padding_mode = op::padding_mode_t::valid;
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
            }
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
            {
                std::vector<size_t> padding;
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }

Khalique's avatar
Khalique committed
350
        return prog.add_instruction(op, {args[0], weights});
Khalique's avatar
Khalique committed
351
352
    }

Khalique's avatar
Khalique committed
353
354
355
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
356
357
358
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
359
        op.group            = num_channels;
Khalique's avatar
Khalique committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }
        if(contains(attributes, "strides"))
        {
            std::vector<size_t> stride;
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
            reorder_data(stride);
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
        }
        auto weights = args[1];
        // check if weights are from a constant
        if(weights->name() != "@param")
        {
            if(is_nhwc)
            {
                weights = prog.add_instruction(op::transpose{{1, 3, 0, 2}}, args[1]);
            }
            else
            {
                weights = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
Khalique's avatar
Khalique committed
391
            }
Khalique's avatar
Khalique committed
392
        }
Khalique's avatar
Khalique committed
393

Khalique's avatar
Khalique committed
394
395
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
396
397
398
399

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
400
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
401
402
403
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
404
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
405
406
        auto cweights    = prog.add_instruction(op::contiguous{}, weights);
        auto new_weights = prog.add_instruction(op::reshape{new_weights_shape}, cweights);
Khalique's avatar
Khalique committed
407

Khalique's avatar
Khalique committed
408
409
410
        return prog.add_instruction(op, {args[0], new_weights});
    }

Khalique's avatar
Khalique committed
411
412
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
413
414
415
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
416

417
418
419
420
421
422
423
424
425
426
427
428
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
            transb = attributes.at("transpose_a").b();
        }

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
429
        std::iter_swap(perm.end() - 1, perm.end() - 2);
430
431
432
433
434
435
436

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
437
438
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
439
    {
Khalique's avatar
Khalique committed
440
        auto axes      = parse_axes(args[1]->eval().get<int32_t>().to_vector());
Khalique's avatar
Khalique committed
441
        bool keep_dims = attributes.at("keep_dims").b();
Khalique's avatar
Khalique committed
442
        std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
443
        // check if conditions for GlobalAvgPool are met
Khalique's avatar
Khalique committed
444
445
        auto lens = args[0]->get_shape().lens();
        if(axes == hw_axes and lens.size() == 4)
Khalique's avatar
Khalique committed
446
447
        {
            op::pooling op{"average"};
Khalique's avatar
Khalique committed
448
449
            op.lengths[0] = lens[2];
            op.lengths[1] = lens[3];
Khalique's avatar
Khalique committed
450
451
452
453
454
            auto l0       = prog.add_instruction(op, args.front());
            if(keep_dims)
                return l0;
            return prog.add_instruction(
                op::squeeze{std::vector<int64_t>(hw_axes.begin(), hw_axes.end())}, l0);
Khalique's avatar
Khalique committed
455
456
457
458
        }
        MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
    }

Khalique's avatar
Khalique committed
459
460
461
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
462
463
464
465
466
467
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
468
469
470
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
471
472
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
473
474
475
476
477
        }
        // check if input arg needs axis to be converted to NCHW
        if(input_size >= 4)
            axis = parse_axis(axis);

Khalique's avatar
Khalique committed
478
479
480
481
482
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Khalique's avatar
Khalique committed
483
484
485
        return prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args);
    }

Khalique's avatar
Khalique committed
486
487
488
489
490
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
491
492
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
493
494
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
495
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
496
        {
Khalique's avatar
Khalique committed
497
498
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
499
500
501
502
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
503
504
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
505
        {
Khalique's avatar
Khalique committed
506
507
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
508
509
510
511
512
        }
        op.pads = pads;
        return prog.add_instruction(op, args.front());
    }

513
514
515
516
517
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
518

519
520
521
522
523
524
525
526
527
528
529
530
531
532
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
        if(contains(attributes, "strides"))
        {
533
            std::vector<size_t> stride;
534
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
535
            reorder_data(stride);
536
537
538
539
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
540
541
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
542
543
544
        }
        if(contains(attributes, "ksize"))
        {
545
            std::vector<size_t> ksize;
546
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
547
            reorder_data(ksize);
548
549
550
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
551
            }
552
553
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
554
        }
555
        return prog.add_instruction(op, args[0]);
556
    }
Khalique's avatar
Khalique committed
557

558
    instruction_ref
Khalique's avatar
Khalique committed
559
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
560
561
562
563
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
564
        auto s = args[1]->eval();
565
566
567
568
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        return prog.add_instruction(op, args[0]);
    }

Khalique's avatar
Khalique committed
569
570
571
572
573
574
575
576
577
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
578
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
579
580
581
        }
    }

582
583
584
585
586
587
588
589
590
591
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

Khalique's avatar
Khalique committed
592
593
594
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
595
596
    {
        op::squeeze op;
597
        auto axes = parse_axes(attributes, "squeeze_dims");
598
        copy(axes, std::back_inserter(op.axes));
599
        auto args0_dims = args[0]->get_shape().lens();
600
601
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
602
            for(size_t i = 0; i < args0_dims.size(); i++)
603
            {
604
                if(args0_dims.at(i) == 1)
605
606
607
608
                {
                    op.axes.push_back(i);
                }
            }
609
        }
610
        return prog.add_instruction(op, args[0]);
611
612
    }

Khalique's avatar
Khalique committed
613
614
615
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
616
617
    {
        op::slice op;
Khalique's avatar
Khalique committed
618
619
620
621
622
623
624
625
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto ends       = args[2]->eval().get<int32_t>().to_vector();
        size_t num_axes = args[0]->get_shape().lens().size();
        if(num_axes >= 4)
        {
            reorder_data(starts);
            reorder_data(ends);
        }
626

Khalique's avatar
Khalique committed
627
628
629
630
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
631
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
632
        uint32_t bitwise_compare  = 1;
633
634
635
        std::vector<int64_t> squeeze_axes;

        if(contains(attributes, "shrink_axis_mask"))
636
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
637

Khalique's avatar
Khalique committed
638
        for(size_t i = 0; i < num_axes; i++)
639
        {
640
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
641
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
642
643
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
644
645
646
647
648
        if(num_axes >= 4)
        {
            squeeze_axes = parse_axes(squeeze_axes);
        }

649
650
651
652
        auto l0 = prog.add_instruction(op, args[0]);
        return prog.add_instruction(op::squeeze{squeeze_axes}, l0);
    }

Khalique's avatar
Khalique committed
653
654
655
656
657
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
658
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
659
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
660
661
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
662
            if(is_nhwc and dims.size() >= 4)
663
            {
664
                reorder_data(dims);
665
            }
Khalique's avatar
Khalique committed
666
667
            shape s            = shape{shape_type, dims};
            instructions[name] = prog.add_parameter(name, s);
Khalique's avatar
Khalique committed
668
669
670
        }
        for(auto&& p : nodes)
        {
671
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
698
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
699
700
701
702
703
704
705
706
707
708
709
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
710
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
711
712
713
714
715
716
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
717
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
718

Khalique's avatar
Khalique committed
719
720
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
780
781
782
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
810
811
812
813
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
814
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
815
816
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
817
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
818
819
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
820
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
821
822
823
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
824
825
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
826
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
827
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
828
            case tensorflow::DataType::DT_UINT16:
829
                return literal{{shape::uint16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
830
            case tensorflow::DataType::DT_INT16:
831
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
832
833
834
835
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
836
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
837
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
838
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
839
840
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
841
842
843
844
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
876
877
878
879
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
880
881
882
883
884
885
886
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
887
888
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
889
890
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
891
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
892
        case tensorflow::DataType::DT_UINT16:
893
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
894
        case tensorflow::DataType::DT_INT16:
895
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
896
        case tensorflow::DataType::DT_INT32:
897
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
898
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
899
900
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
901
902
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
903
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
904
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
905
        {
906
907
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
908
909
910
911
912
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
913
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
914
        }
Khalique's avatar
Khalique committed
915
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
916
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
917
918
919
920
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
952
953
954
955
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
956
957
958
959
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

960
    template <class T>
Khalique's avatar
Khalique committed
961
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
962
                                        const size_t& shape_size)
963
964
965
966
967
968
969
970
971
972
973
974
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
975
976
977
978
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
979
980
981
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
982
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
983
984
        return dims;
    }
985
986

    template <class T>
Khalique's avatar
Khalique committed
987
    static literal
988
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
989
    {
Khalique's avatar
Khalique committed
990
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
991
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
992
            return literal{{shape_type}, data};
993
994
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx