task.py 46.7 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

baberabb's avatar
baberabb committed
16
from typing import Union, List, Any, Tuple, Literal
17
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
36
37
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
47
48
49
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
55
    group: Union[str, list] = None
56
57
58
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
59
60
    dataset_path: str = None
    dataset_name: str = None
61
    dataset_kwargs: dict = None
62
63
64
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
65
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
66
67
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
68
    process_docs: Callable = None
69
70
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
71
    doc_to_choice: Union[Callable, str, dict, list] = None
72
    gold_alias: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
73
    process_results: Union[Callable, str] = None
74
    use_prompt: str = None
75
    description: str = ""
76
77
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
78
    fewshot_config: dict = None
79
    # runtime configuration options
80
    num_fewshot: int = 0
81
    # scoring options
82
    metric_list: list = None
83
    output_type: str = "greedy_until"
84
    generation_kwargs: dict = None
85
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
86
    filter_list: Union[str, list] = None
87
88
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
89

lintangsutawika's avatar
lintangsutawika committed
90
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
91

Ethan Smith's avatar
Ethan Smith committed
92
    def __post_init__(self) -> None:
lintangsutawika's avatar
lintangsutawika committed
93
94
95
        if "." in self.dataset_path:
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
96

lintangsutawika's avatar
lintangsutawika committed
97
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
98

Lintang Sutawika's avatar
Lintang Sutawika committed
99
100
101
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
102
                    "passed `generation_kwargs`, but not using `output_type: greedy_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
103
                )
104
                assert self.output_type != "greedy_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
105
106
107
108
109
110
111

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
112
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
113
114
115
116
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
117
                    "until": None
118
119
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
120
121
122
                    "do_sample": False,
                    "temperature": 0.0,
                }
123

haileyschoelkopf's avatar
haileyschoelkopf committed
124
125
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

126
127
128
    def __getitem__(self, item):
        return getattr(self, item)

129
130
131
    def __setitem__(self, item, value):
        return setattr(self, item, value)

132
    def to_dict(self):
133
134
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        Used for dumping results alongside full task configuration
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
141
142
143
144
145
146
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
147
148
149
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
150
        return cfg_dict
151

152
153
154
155
156
157
158
159
160
161
162
163

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
164

165
166
167
168
169
170
171
172
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
173

174
175
176
177
178
179
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
180
    ) -> None:
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
207
        self._config = TaskConfig(**config) if config else TaskConfig()
208
209
210

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
211
            for name, components in self._config.get(
212
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
213
            ):
214
215
216
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
217
        self.sampler = samplers.Sampler(
218
219
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
220

Ethan Smith's avatar
Ethan Smith committed
221
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
246
247
248
249
250
251
252
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
253

254
255
256
257
258
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

295
296
297
298
299
300
301
302
303
304
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
305
            eval_logger.warning(
306
                "has_training_docs and has_validation_docs are False"
307
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
308
            )
309
310
            return self.test_docs()

311
312
313
314
315
316
317
318
319
320
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
321

322
323
324
325
326
327
328
329
330
331
332
333
334
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
335
    def doc_to_decontamination_query(self, doc) -> None:
336
337
338
339
340
341
342
343
344
345
346
347
348
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
349
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
350
351
352
353
354
355
356
357
358
359
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

360
        eval_logger.info(
361
            f"Building contexts for task '{self.config.task}' on rank {rank}..."
362
363
        )

364
        instances = []
365
366
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
367
        ):
368
            # sample fewshot context #TODO: need to offset doc_id by rank now!
369
            fewshot_ctx = self.fewshot_context(
370
                doc,
371
                self.config.num_fewshot,
372
            )
373

374
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
375
376
377
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
378
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
379
            )
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
405
            The number of times each instance in a dataset is inferred on. Defaults to 1,
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
441
442
443
444
445
446
447
448
449
450
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

451
    @utils.positional_deprecated
452
    def fewshot_context(self, doc, num_fewshot):
453
454
455
456
457
458
459
460
461
462
463
464
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
465
            # always prepend the (possibly empty) task description
466
            labeled_examples = self.config.description
467
        else:
468
            labeled_examples = self.config.description + self.sampler.get_context(
lintangsutawika's avatar
lintangsutawika committed
469
470
                doc, num_fewshot
            )
471
472

        example = self.doc_to_text(doc)
473
474
475
476
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
477
        elif type(example) == int:
478
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
479
480
481
482
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)
483
484

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
485
486
487
488
489
490
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
491

baberabb's avatar
baberabb committed
492
    def dump_config(self) -> dict:
493
        """Returns a dictionary representing the task's config.
494
495
496
497
498

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
499
        # (num_fewshot)
500
        return self.config.to_dict()
501

502
503

class ConfigurableTask(Task):
504
    VERSION = "Yaml"
505
    OUTPUT_TYPE = None
506
    CONFIG = None
507
508
509

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
510
    ) -> None:  # TODO no super() call here
511
        # Get pre-configured attributes
512
        self._config = self.CONFIG
513

514
        # Use new configurations if there was no preconfiguration
515
        if self.config is None:
516
            self._config = TaskConfig(**config)
517
518
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
519
            if config is not None:
520
                self._config.__dict__.update(config)
521

522
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
523
524
525
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
526

527
528
529
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
530

531
532
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
533

534
535
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
536

537
538
539
540
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
541

542
543
        _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]
        if self.config.metric_list is None:
544
            # TODO: handle this in TaskConfig.__post_init__ ?
545
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
546
547
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
548
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
549
550
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
551
        else:
552
            for metric_config in self.config.metric_list:
553
554
555
556
557
558
559
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
560

561
                if self.config.process_results is not None:
562
563
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
564
565
566
567
568
569
570
571
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
                    self._metric_fn_list[metric_name] = get_metric(metric_name)
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
572

573
                if "aggregation" in metric_config:
574
                    agg_name = metric_config["aggregation"]
575
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
576
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
577
578
579
580
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
581
                else:
582
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
583
                    metric_agg = get_default_aggregation(metric_name)
584
                    eval_logger.warning(
baberabb's avatar
baberabb committed
585
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
586
587
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
588
                    )
589
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
590

591
592
593
594
595
596
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
597
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
598
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
599
                        f"higher_is_better={is_higher_better(metric_name)}"
600
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
601
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
602

603
        self.download(self.config.dataset_kwargs)
604
605
606
        self._training_docs = None
        self._fewshot_docs = None

607
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
608
            self._filters = []
609
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
610
611
612
613
614
615
616
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
617
618
619
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
620
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
621
        else:
622
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
623

624
625
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
626
            self.prompt = get_prompt(
627
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
628
            )
629
630
631
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
632
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
633
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
634
635
636
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
637
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
638

639
        if self.has_test_docs():
640
            self.task_docs = self.test_docs()
641
        elif self.has_validation_docs():
642
            self.task_docs = self.validation_docs()
643
644
645
646
647
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

648
        # Test One Doc
649
        self.features = list(self.task_docs.features.keys())
650
651
        self.multiple_input = 0
        self.multiple_target = 0
652
        test_doc = self.task_docs[0]
653
        test_text = self.doc_to_text(test_doc)
654
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
655

656
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
657
658
659
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
660
661
            else:
                num_choice = len(test_choice)
662

663
664
            if type(test_text) is int:
                self.multiple_input = num_choice
665
666
        else:
            test_choice = None
667

668
        if type(test_target) is list:
669
            self.multiple_target = len(test_target)
670
        else:
lintangsutawika's avatar
lintangsutawika committed
671
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
672
                test_target = test_choice[test_target]
673
            else:
lintangsutawika's avatar
lintangsutawika committed
674
                test_target = str(test_target)
675

676
677
678
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
679
            check_choices = [test_target]
680
681
682
683
684
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
                    True if self.config.target_delimiter[-1].isspace() else False
685
                )
686

687
688
689
690
691
692
693
694
695
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" does not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
                    )

Ethan Smith's avatar
Ethan Smith committed
696
    def download(self, dataset_kwargs=None) -> None:
697
698
699
700
701
702
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
703
    def has_training_docs(self) -> bool:
704
        if self.config.training_split is not None:
705
706
707
708
            return True
        else:
            return False

baberabb's avatar
baberabb committed
709
    def has_validation_docs(self) -> bool:
710
        if self.config.validation_split is not None:
711
712
713
714
            return True
        else:
            return False

baberabb's avatar
baberabb committed
715
    def has_test_docs(self) -> bool:
716
        if self.config.test_split is not None:
717
718
719
720
            return True
        else:
            return False

baberabb's avatar
baberabb committed
721
    def training_docs(self) -> datasets.Dataset:
722
        if self.has_training_docs():
723
724
725
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
726
                )
727
            return self.dataset[self.config.training_split]
728

baberabb's avatar
baberabb committed
729
    def validation_docs(self) -> datasets.Dataset:
730
        if self.has_validation_docs():
731
732
733
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
734
                )
735
            return self.dataset[self.config.validation_split]
736

baberabb's avatar
baberabb committed
737
    def test_docs(self) -> datasets.Dataset:
738
        if self.has_test_docs():
739
740
741
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
742

743
    def fewshot_docs(self):
744
745
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
746
        else:
747
            if self.config.num_fewshot > 0:
748
                eval_logger.warning(
749
                    f"Task '{self.config.task}': "
750
751
752
753
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
754

755
756
757
758
759
760
761
762
763
    def apply_filters(self):

        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

764
    def should_decontaminate(self):
765
        return self.config.should_decontaminate
766
767

    def doc_to_decontamination_query(self, doc):
768
769
770
        if self.config.should_decontaminate:
            if self.config.doc_to_decontamination_query in self.features:
                return doc[self.config.doc_to_decontamination_query]
771
772
            else:
                return ast.literal_eval(
773
                    utils.apply_template(self.config.doc_to_decontamination_query, doc)
774
                )
775

776
777
778
779
780
781
782
783
784
785
786
787
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
788
789
        if self.prompt is not None:
            doc_to_text = self.prompt
790
        else:
791
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
792

793
794
795
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
796
            if doc_to_text in self.features:
797
                # if self.config.doc_to_choice is not None:
798
799
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
800
801
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
802
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
803
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
804
805
806
                    return ast.literal_eval(text_string)
                else:
                    return text_string
807
        elif callable(doc_to_text):
808
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
809
        # Used when applying a Promptsource template
810
        elif hasattr(doc_to_text, "apply"):
811
812
813
814
815
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
816
                return self.config.fewshot_delimiter
817
        else:
818
            print(type(doc_to_text))
819
            raise TypeError
820

821
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
822
823
        if self.prompt is not None:
            doc_to_target = self.prompt
824
        else:
825
            doc_to_target = self.config.doc_to_target
826

827
828
829
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
830
            if doc_to_target in self.features:
831
                # if self.config.doc_to_choice is not None:
832
833
834
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
835
            else:
lintangsutawika's avatar
lintangsutawika committed
836
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
837
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
838
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
839
840
841
842
843
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
844
845
846
847
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
848
849
                else:
                    return target_string
850
851
        elif type(doc_to_target) == list:
            return doc_to_target
852
        elif callable(doc_to_target):
853
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
854
        # Used when applying a Promptsource template
855
        elif hasattr(doc_to_target, "apply"):
856
            applied_prompt = doc_to_target.apply(doc)
857
858
859
860
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
861
                return self.config.fewshot_delimiter
862
863
        else:
            raise TypeError
864

baberabb's avatar
baberabb committed
865
    def doc_to_choice(self, doc: Any) -> List[str]:
866
867
        if self.prompt is not None:
            doc_to_choice = self.prompt
868
        elif self.config.doc_to_choice is None:
869
870
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
871
            doc_to_choice = self.config.doc_to_choice
872
873
874
875
876
877
878
879
880
881
882
883
884

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
885

886
    def gold_alias(self, doc):
887
888
889
890
891
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
892
893
        if self.config.gold_alias is not None:
            doc_to_target = self.config.gold_alias
894
        else:
lintangsutawika's avatar
lintangsutawika committed
895
            return self.doc_to_target(doc)
896
897
898
899
900
901
902
903
904
905

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

baberabb's avatar
baberabb committed
906
907
908
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
909
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
910
            arguments = (ctx, self.doc_to_target(doc))
911
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
912
            arguments = (self.doc_to_target(doc),)
913
        elif self.OUTPUT_TYPE == "multiple_choice":
914
            choices = self.doc_to_choice(doc)
915
            target_delimiter = self.config.target_delimiter
916
917
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
918
                cont = self.doc_to_target(doc)
919
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
920
            else:
921
                # Otherwise they are placed in the continuation
922
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
923

924
            request_list = [
925
926
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
927
                    doc=doc,
928
                    arguments=arg,
929
                    idx=i,
930
931
                    **kwargs,
                )
932
                for i, arg in enumerate(arguments)
933
            ]
934
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
935
            if "acc_mutual_info" in self._metric_fn_list.keys():
936
937
938
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
939
                # here mutual info refers to calculating
940
941
942
943
944
945
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
946
                            doc=doc,
947
                            arguments=("", "{}".format(choice)),
948
949
950
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
951
                        for i, choice in enumerate(choices)
952
953
954
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
955

956
        elif self.OUTPUT_TYPE == "greedy_until":
957
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
958
959

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
960
961
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
962
963
964

    def process_results(self, doc, results):

965
966
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
967

968
        result_dict = {}
969
        use_metric = list(self._metric_fn_list.keys())
970
971
972
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
973
974
975
976
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
977
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
978
            (loglikelihood,) = results
979
980
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
981
            return {
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
997
            }
998
        elif self.OUTPUT_TYPE == "multiple_choice":
999
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1000

1001
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1002
            choices = self.doc_to_choice(doc)
1003
1004
            completion_len = np.array([float(len(i)) for i in choices])

1005
1006
            if (
                2 * len(choices) == len(lls)
1007
                and "acc_mutual_info" in self._metric_fn_list.keys()
1008
1009
1010
1011
1012
1013
1014
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1015

1016
1017
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1018

1019
1020
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1021
            else:
1022
                gold = self.doc_to_target(doc)
1023
1024
1025

            gold_index_error = False
            if type(gold) is list:
Lintang Sutawika's avatar
Lintang Sutawika committed
1026
1027
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1028
1029
1030
                    gold_index_error = True
            else:
                if type(gold) is int:
Lintang Sutawika's avatar
Lintang Sutawika committed
1031
                    gold = gold if gold < len(choices) else -100
1032
                elif type(gold) is str:
Lintang Sutawika's avatar
Lintang Sutawika committed
1033
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1034

Lintang Sutawika's avatar
Lintang Sutawika committed
1035
                if gold == -100:
1036
1037
1038
1039
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1040
                    f"Label index was not in within range of available choices,"
1041
1042
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1043

1044
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1045
1046
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1047
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1048
1049
1050
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1051
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1052
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1053
1054

            result_dict = {
1055
                **({"acc": acc} if "acc" in use_metric else {}),
1056
1057
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1058
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1059
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1060
1061
            }

1062
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1063
1064
1065
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1066
1067
1068
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1069
        elif self.OUTPUT_TYPE == "greedy_until":
1070
            gold = self.doc_to_target(doc)
1071
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1072
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1073
                # it assumes that doc_to_target returns a number.
1074
1075
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1076
1077
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1078
                gold = list(gold)
lintangsutawika's avatar
lintangsutawika committed
1079
1080
            else:
                gold = str(gold)
1081

lintangsutawika's avatar
lintangsutawika committed
1082
            result = results[0]
lintangsutawika's avatar
lintangsutawika committed
1083
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1084
1085
1086
1087
1088
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1089
1090
1091
1092
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1093
                    for gold_option in gold:
1094
                        try:
1095
                            result_score = self._metric_fn_list[metric](
1096
1097
                                references=[gold_option],
                                predictions=[result],
1098
                                **self._metric_fn_kwargs[metric],
1099
1100
                            )
                        except TypeError:  # TODO: this is hacky and I don't want to do it
1101
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1102
1103
1104
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1105
                            # TODO: this handles the case where HF evaluate returns a dict.
1106
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1107
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1108
                    if any(scores):
1109
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1110
                    else:
1111
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1112
                else:
1113
                    try:
1114
                        result_score = self._metric_fn_list[metric](
1115
1116
                            references=[gold],
                            predictions=[result],
1117
                            **self._metric_fn_kwargs[metric],
1118
                        )
1119
1120
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
                        result_score = self._metric_fn_list[metric]([gold, result])
1121
1122
1123
1124
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1125
        else:
lintangsutawika's avatar
lintangsutawika committed
1126
1127
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1128
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until' or 'multiple_choice'",
1129
            )
1130
1131
1132
1133
1134
1135
1136

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1137
        return self._higher_is_better
1138
1139
1140
1141
1142


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1143
    def doc_to_target(self, doc: dict) -> str:
1144
1145
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1146
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1147
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1148
1149
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1150
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1151
                doc=doc,
1152
                arguments=(ctx, " {}".format(choice)),
1153
                idx=i,
1154
1155
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1156
1157
            for i, choice in enumerate(doc["choices"])
        ]
1158

baberabb's avatar
baberabb committed
1159
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1160
1161
1162
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1174
    def higher_is_better(self) -> dict:
1175
1176
1177
1178
1179
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1180
    def aggregation(self) -> dict:
1181
1182
1183
1184
1185
1186
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1187
class PerplexityTask(Task):
1188
1189
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1190
    def has_training_docs(self) -> bool:
1191
1192
        return False

baberabb's avatar
baberabb committed
1193
    def fewshot_examples(self, k: int, rnd) -> List:
1194
1195
1196
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1197
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1198
1199
1200
1201
1202
1203
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1204
    def higher_is_better(self) -> dict:
1205
1206
1207
1208
1209
1210
1211
1212
1213
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1214
    def doc_to_text(self, doc) -> str:
1215
1216
1217
1218
1219
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1220
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1221
1222
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1223
1224
1225
1226
1227
1228
1229
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1230

baberabb's avatar
baberabb committed
1231
    def process_results(self, doc: dict, results: float) -> dict:
1232
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1233
1234
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1235
1236
1237
1238
1239
1240
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1241
    def aggregation(self) -> dict:
1242
1243
1244
1245
1246
1247
1248
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1249
    def count_bytes(cls, doc) -> int:
1250
1251
1252
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1253
    def count_words(cls, doc) -> int:
1254
1255
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))