task.py 40.4 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

16
17
from typing import Union
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
36
37
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
47
48
49
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
55
    group: Union[str, list] = None
56
57
58
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
59
60
    dataset_path: str = None
    dataset_name: str = None
61
    dataset_kwargs: dict = None
62
63
64
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
65
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
66
67
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
68
    template_aliases: Union[str, list] = None
69
70
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
71
    doc_to_choice: Union[Callable, str, dict, list] = None
72
    gold_alias: Union[Callable, str] = None
73
    use_prompt: str = None
74
    description: str = ""
75
76
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
77
    # runtime configuration options
78
    num_fewshot: int = 0
79
    # scoring options
80
81
    metric_list: str = None
    output_type: str = "greedy_until"
82
    generation_kwargs: dict = None
83
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
84
    filter_list: Union[str, list] = None
85
86
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
87

lintangsutawika's avatar
lintangsutawika committed
88
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
89

90
91
92
93
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
94
        if self.template_aliases:
95
96
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
97

98
99
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
100

101
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
102
                self.gold_alias = self.template_aliases + self.gold_alias
103

Lintang Sutawika's avatar
Lintang Sutawika committed
104
105
106
107
108
109
110
111
112
113
114
115
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
                    "passed `generation_kwargs`, but not using a generation request type!"
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
116
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
117
118
119
120
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
121
                    "until": None
122
123
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
124
125
126
                    "do_sample": False,
                    "temperature": 0.0,
                }
127

haileyschoelkopf's avatar
haileyschoelkopf committed
128
129
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

130
131
132
    def __getitem__(self, item):
        return getattr(self, item)

133
    def to_dict(self):
134
135
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
136
        Used for dumping results alongside full task configuration
137

haileyschoelkopf's avatar
haileyschoelkopf committed
138
139
140
141
142
143
144
145
146
147
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
148
149
150
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
151
        return cfg_dict
152

153
154
155
156
157
158
159
160
161
162
163
164

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
165

166
167
168
169
170
171
172
173
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
209
        self._config = TaskConfig(**config) if config else TaskConfig()
210
211
212

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
213
            for name, components in self._config.get(
214
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
215
            ):
216
217
218
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
219
        self.sampler = samplers.Sampler(
220
221
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
248
249
250
251
252
253
254
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

292
293
294
295
296
297
298
299
300
301
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
302
            eval_logger.warning(
303
                "has_training_docs and has_validation_docs are False"
304
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
305
            )
306
307
            return self.test_docs()

308
309
310
311
312
313
314
315
316
317
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

346
    def build_all_requests(self, limit=None, rank=None, world_size=None):
347
348
349
350
351
352
353
354
355
356
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

357
358
359
360
        eval_logger.info(
            f"Building contexts for task '{self._config.task}' on rank {rank}..."
        )

361
        instances = []
362
363
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
364
        ):
365
            # sample fewshot context #TODO: need to offset doc_id by rank now!
366
            fewshot_ctx = self.fewshot_context(
367
368
                doc,
                self._config.num_fewshot,
369
            )
370

haileyschoelkopf's avatar
haileyschoelkopf committed
371
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
372
373
374
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
375
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
376
            )
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
402
            The number of times each instance in a dataset is inferred on. Defaults to 1,
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
438
439
440
441
442
443
444
445
446
447
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

448
    @utils.positional_deprecated
449
    def fewshot_context(self, doc, num_fewshot):
450
451
452
453
454
455
456
457
458
459
460
461
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
462
463
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
464
        else:
lintangsutawika's avatar
lintangsutawika committed
465
466
467
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
468
469

        example = self.doc_to_text(doc)
470
471
472
473
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
474
475
476

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
477
478
479
480
481
482
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
483

484
    def dump_config(self):
485
        """Returns a dictionary representing the task's config.
486
487
488
489
490

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
491
        # (num_fewshot)
492
493
        return self._config.to_dict()

494
495
496

class ConfigurableTask(Task):

497
    VERSION = "Yaml"
498
    OUTPUT_TYPE = None
499
    CONFIG = None
500
501
502
503

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
504
        # Get pre-configured attributes
505
        self._config = self.CONFIG
506

507
508
        # Use new configurations if there was no preconfiguration
        if self._config is None:
509
            self._config = TaskConfig(**config)
510
511
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
512
            if config is not None:
513
                self._config.__dict__.update(config)
514

515
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
516
517
518
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
519
520

        if self._config.output_type is not None:
521
            assert self._config.output_type in ALL_OUTPUT_TYPES
522
523
            self.OUTPUT_TYPE = self._config.output_type

524
525
526
527
528
529
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

530
531
532
533
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
534

535
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
536
        if self._config.metric_list is None:
537
            # TODO: handle this in TaskConfig.__post_init__ ?
538
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
539
540
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
541
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
542
543
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
544
545
546
547
548
549
550
551
552
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
haileyschoelkopf's avatar
haileyschoelkopf committed
553
554
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
555

556
                if "aggregation" in metric_config:
557
                    agg_name = metric_config["aggregation"]
558
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
559
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
560
561
562
563
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
564
                else:
565
566

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
567
                    metric_agg = get_default_aggregation(metric_name)
568
                    eval_logger.warning(
569
570
571
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
572
                    )
573
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
574

575
576
577
578
579
580
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
581
582
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
583
                        f"higher_is_better={is_higher_better(metric_name)}"
584
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
585
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
586

587
        self.download(self._config.dataset_kwargs)
588
589
590
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
591
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
592
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
593
594
595
596
597
598
599
600
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
601
602
603
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
604
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
605
        else:
606
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
607
608

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
609
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
610
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
611
612
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
613
614
615
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
616
617
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
618
                list(self.fewshot_docs()), self, rnd=random.Random(1234)
619
            )
620

621
622
623
624
        if self._config.template_aliases is not None:
            for key, alias in self._config.template_aliases:
                self.dataset.rename_column(key, alias)

625
626
627
628
629
630
631
632
633
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

634
        # Test One Doc
635
636
637
        self.features = list(docs.features.keys())
        self.multiple_input = 0
        self.multiple_target = 0
638
639
        test_doc = docs[0]
        test_text = self.doc_to_text(test_doc)
640
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
641
642
643
644
645

        if self._config.doc_to_choice is not None:
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
646
647
            else:
                num_choice = len(test_choice)
648

649
650
            if type(test_text) is int:
                self.multiple_input = num_choice
651

652
        if type(test_target) is list:
653
654
            self.multiple_target = len(test_target)

655
656
657
658
659
660
661
662
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

693
    def fewshot_docs(self):
694
        if self._config.fewshot_split is not None:
695
            return self.dataset[self._config.fewshot_split]
696
697
698
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
699
                    f"Task '{self._config.task}': "
700
701
702
703
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
704

705
706
707
708
709
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
710
711
712
713
714
715
            if self._config.doc_to_decontamination_query in self.features:
                return doc[self._config.doc_to_decontamination_query]
            else:
                return ast.literal_eval(
                    utils.apply_template(self._config.doc_to_decontamination_query, doc)
                )
716

717
718
719
720
721
722
723
724
725
726
727
728
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
729
730
731

        if self.prompt is not None:
            doc_to_text = self.prompt
732
733
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
734

735
736
737
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
738
            if doc_to_text in self.features:
739
740
741
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
742
743
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
744
745
746
747
748
                text_string = utils.apply_template(doc_to_text, doc)
                if text_string.isdigit():
                    return ast.literal_eval(text_string)
                else:
                    return text_string
749
        elif callable(doc_to_text):
750
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
751
        # Used when applying a Promptsource template
752
        elif hasattr(doc_to_text, "apply"):
753
            return doc_to_text.apply(doc)[0]
754
        else:
755
            print(type(doc_to_text))
756
            raise TypeError
757
758

    def doc_to_target(self, doc):
759
760
761

        if self.prompt is not None:
            doc_to_target = self.prompt
762
763
764
        else:
            doc_to_target = self._config.doc_to_target

765
766
767
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
768
            if doc_to_target in self.features:
769
770
771
772
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
773
            else:
lintangsutawika's avatar
lintangsutawika committed
774
775
776
777
778
                target_string = utils.apply_template(doc_to_target, doc)
                if target_string.isdigit():
                    return ast.literal_eval(target_string)
                else:
                    return target_string
779
        elif callable(doc_to_target):
780
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
781
        # Used when applying a Promptsource template
782
783
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
784
785
        else:
            raise TypeError
786
787
788
789
790

    def doc_to_choice(self, doc):

        if self.prompt is not None:
            doc_to_choice = self.prompt
lintangsutawika's avatar
lintangsutawika committed
791
        elif self._config.doc_to_choice is None:
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
            doc_to_choice = self._config.doc_to_choice

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
808

809
    def gold_alias(self, doc):
810
811
812
813
814
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
815
        if self._config.gold_alias is not None:
816
817
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
818
            return self.doc_to_target(doc)
819
820
821
822
823
824
825
826
827
828

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

829
830
    def construct_requests(self, doc, ctx, **kwargs):

831
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
832
            arguments = (ctx, self.doc_to_target(doc))
833
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
834
            arguments = (self.doc_to_target(doc),)
835
        elif self.OUTPUT_TYPE == "multiple_choice":
836
837
838
839

            choices = self.doc_to_choice(doc)
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
840
                cont = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
841
                arguments = [(ctx, " {}".format(cont)) for ctx in choices]
842
            else:
843
                # Otherwise they are placed in the continuation
lintangsutawika's avatar
lintangsutawika committed
844
                arguments = [(ctx, " {}".format(cont)) for cont in choices]
845

846
            request_list = [
847
848
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
849
                    doc=doc,
850
                    arguments=arg,
851
                    idx=i,
852
853
                    **kwargs,
                )
854
                for i, arg in enumerate(arguments)
855
            ]
856
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
857
            if "acc_mutual_info" in self._metric_fn_list.keys():
858
859
860
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
861
                # here mutual info refers to calculating
862
863
864
865
866
867
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
868
                            doc=doc,
869
                            arguments=("", "{}".format(choice)),
870
871
872
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
873
                        for i, choice in enumerate(choices)
874
875
876
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
877

878
        elif self.OUTPUT_TYPE == "greedy_until":
879
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
880
881

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
882
883
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
884
885
886

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
887
888
889
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

890
        result_dict = {}
891
        use_metric = list(self._metric_fn_list.keys())
892
893
894
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
895
896
897
898
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
899
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
900
            (loglikelihood,) = results
901
902
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
903
            return {
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
919
            }
920
        elif self.OUTPUT_TYPE == "multiple_choice":
921
922

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
923

924
            # retrieve choices in List[str] form, to compute choice lengths, etc.
925
            choices = self.doc_to_choice(doc)
926
927
            completion_len = np.array([float(len(i)) for i in choices])

928
929
            if (
                2 * len(choices) == len(lls)
930
                and "acc_mutual_info" in self._metric_fn_list.keys()
931
932
933
934
935
936
937
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
938

939
940
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
941

942
943
            if self.multiple_input:
                gold = self.doc_to_text(doc)
944
            else:
945
                gold = self.doc_to_target(doc)
946
947
                if type(gold) is str:
                    gold = choices.index(gold)
lintangsutawika's avatar
lintangsutawika committed
948

949
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
950
951
952
953
954
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
955
956

            result_dict = {
957
                **({"acc": acc} if "acc" in use_metric else {}),
958
959
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
960
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
961
962
            }

963
            if "exact_match" in self._metric_fn_list.keys():
964
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
965
                is_greedy = is_greedy[gold]  # take value for the gold answer
966
967
                result_dict["exact_match"] = int(is_greedy)

968
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
969
970
971
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
972
973
974
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

975
976
        elif self.OUTPUT_TYPE == "greedy_until":

977
            gold = self.doc_to_target(doc)
978

979
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
                    for gold_option in gold:
                        res = self._metric_fn_list[key](
                            references=[gold_option],
                            predictions=[result],
                            **self._metric_fn_kwargs[key],
                        )
                        if isinstance(res, dict):
                            # TODO: this handles the case where HF evaluate returns a dict.
                            res = res[key]
                        scores.append(res)
                    if any(scores):
                        result = 1.0
                    else:
                        result = 0.0
                else:
                    result = self._metric_fn_list[key](
                        references=[gold],
                        predictions=[result],
                        **self._metric_fn_kwargs[key],
                    )
1005

haileyschoelkopf's avatar
haileyschoelkopf committed
1006
1007
1008
1009
                if isinstance(result, dict):
                    result_dict.update(result)
                else:
                    result_dict[key] = result
1010
        else:
lintangsutawika's avatar
lintangsutawika committed
1011
1012
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1013
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until' or 'multiple_choice'",
1014
            )
1015
1016
1017
1018
1019
1020
1021

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1022
        return self._higher_is_better
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
1033
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1034
1035
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1036
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1037
                doc=doc,
1038
                arguments=(ctx, " {}".format(choice)),
1039
                idx=i,
1040
1041
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1042
1043
            for i, choice in enumerate(doc["choices"])
        ]
1044
1045

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
1046
1047
1048
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1073
class PerplexityTask(Task):
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

1084
    def fewshot_context(self, doc, num_fewshot):
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1110
1111
1112
1113
1114
1115
1116
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1117
1118
1119

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1120
1121
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))