task.py 47.4 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

baberabb's avatar
baberabb committed
16
from typing import Union, List, Any, Tuple, Literal
17
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
    get_metric,
    get_aggregation,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
47
    "generate_until",
48
49
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
55
    task_alias: str = None
56
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
57
    group_alias: Union[str, list] = None
58
59
60
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
61
62
    dataset_path: str = None
    dataset_name: str = None
63
    dataset_kwargs: dict = None
64
65
66
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
67
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
68
69
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
70
    process_docs: Callable = None
71
72
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
73
    doc_to_choice: Union[Callable, str, dict, list] = None
74
    gold_alias: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
75
    process_results: Union[Callable, str] = None
76
    use_prompt: str = None
77
    description: str = ""
78
79
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
80
    fewshot_config: dict = None
81
    # runtime configuration options
82
    num_fewshot: int = 0
83
    # scoring options
84
    metric_list: list = None
85
    output_type: str = "generate_until"
86
    generation_kwargs: dict = None
87
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
88
    filter_list: Union[str, list] = None
89
90
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
91

lintangsutawika's avatar
lintangsutawika committed
92
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
93

Ethan Smith's avatar
Ethan Smith committed
94
    def __post_init__(self) -> None:
lintangsutawika's avatar
lintangsutawika committed
95
96
97
        if "." in self.dataset_path:
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
98

lintangsutawika's avatar
lintangsutawika committed
99
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
100

Lintang Sutawika's avatar
Lintang Sutawika committed
101
        if self.generation_kwargs is not None:
102
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
103
                eval_logger.warning(
104
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
105
                )
106
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
107
108
109
110
111
112
113

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
114
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
115
        else:
116
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
117
118
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
119
                    "until": None
120
121
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
122
123
                    "do_sample": False,
                }
124

haileyschoelkopf's avatar
haileyschoelkopf committed
125
126
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

127
128
129
    def __getitem__(self, item):
        return getattr(self, item)

130
131
132
    def __setitem__(self, item, value):
        return setattr(self, item, value)

133
    def to_dict(self):
134
135
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
136
        Used for dumping results alongside full task configuration
137

haileyschoelkopf's avatar
haileyschoelkopf committed
138
139
140
141
142
143
144
145
146
147
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
148
149
150
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
151
        return cfg_dict
152

153
154
155
156
157
158
159
160
161
162
163
164

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
165

166
167
168
169
170
171
172
173
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
174

175
176
177
178
179
180
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
181
    ) -> None:
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
208
        self._config = TaskConfig(**config) if config else TaskConfig()
209
210
211

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
212
            for name, components in self._config.get(
213
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
214
            ):
215
216
217
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
218
        self.sampler = samplers.Sampler(
219
220
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
221

Ethan Smith's avatar
Ethan Smith committed
222
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
247
248
249
250
251
252
253
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
254

255
256
257
258
259
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

296
297
298
299
300
301
302
303
304
305
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
306
            eval_logger.warning(
307
                "has_training_docs and has_validation_docs are False"
308
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
309
            )
310
311
            return self.test_docs()

312
313
314
315
316
317
318
319
320
321
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
322

323
324
325
326
327
328
329
330
331
332
333
334
335
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
336
    def doc_to_decontamination_query(self, doc) -> None:
337
338
339
340
341
342
343
344
345
346
347
348
349
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
350
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
351
352
353
354
355
356
357
358
359
360
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

361
        eval_logger.info(
362
            f"Building contexts for task '{self.config.task}' on rank {rank}..."
363
364
        )

365
        instances = []
366
367
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
368
        ):
369
            # sample fewshot context #TODO: need to offset doc_id by rank now!
370
            fewshot_ctx = self.fewshot_context(
371
                doc,
372
                self.config.num_fewshot,
373
            )
374

375
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
376
377
378
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
379
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
380
            )
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
406
            The number of times each instance in a dataset is inferred on. Defaults to 1,
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
442
443
444
445
446
447
448
449
450
451
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

452
    @utils.positional_deprecated
453
    def fewshot_context(self, doc, num_fewshot):
454
455
456
457
458
459
460
461
462
463
464
465
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
466
            # always prepend the (possibly empty) task description
467
            labeled_examples = self.config.description
468
        else:
469
            labeled_examples = self.config.description + self.sampler.get_context(
lintangsutawika's avatar
lintangsutawika committed
470
471
                doc, num_fewshot
            )
472
473

        example = self.doc_to_text(doc)
474
475
476
477
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
478
        elif type(example) == int:
479
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
480
481
482
483
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)
484
485

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
486
487
488
489
490
491
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
492

baberabb's avatar
baberabb committed
493
    def dump_config(self) -> dict:
494
        """Returns a dictionary representing the task's config.
495
496
497
498
499

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
500
        # (num_fewshot)
501
        return self.config.to_dict()
502

503
504

class ConfigurableTask(Task):
505
    VERSION = "Yaml"
506
    OUTPUT_TYPE = None
507
    CONFIG = None
508
509
510

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
511
    ) -> None:  # TODO no super() call here
512
        # Get pre-configured attributes
513
        self._config = self.CONFIG
514

515
        # Use new configurations if there was no preconfiguration
516
        if self.config is None:
517
            self._config = TaskConfig(**config)
518
519
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
520
            if config is not None:
521
                self._config.__dict__.update(config)
522

523
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
524
525
526
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
527

528
529
530
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
531

532
533
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
534

535
536
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
537

538
539
540
541
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
542

543
        if self.config.metric_list is None:
544
            # TODO: handle this in TaskConfig.__post_init__ ?
545
546
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

547
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
548
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
549
                self._metric_fn_kwargs[metric_name] = {}
550
551
552
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
553
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
554
        else:
555
            for metric_config in self.config.metric_list:
556
557
558
559
560
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
561
562
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
563
                }
Chris's avatar
Chris committed
564
565
566
567
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
568

569
                if self.config.process_results is not None:
570
571
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
572
573
574
575
576
577
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
578
579
580
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
581
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
582

583
                if "aggregation" in metric_config:
584
                    agg_name = metric_config["aggregation"]
585
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
586
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
587
588
589
590
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
591
                else:
592
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
593
                    metric_agg = get_metric_aggregation(metric_name)
594
                    eval_logger.warning(
baberabb's avatar
baberabb committed
595
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
596
597
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
598
                    )
599
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
600

601
602
603
604
605
606
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
607
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
608
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
609
                        f"higher_is_better={is_higher_better(metric_name)}"
610
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
611
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
612

613
        self.download(self.config.dataset_kwargs)
614
615
616
        self._training_docs = None
        self._fewshot_docs = None

617
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
618
            self._filters = []
619
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
620
621
622
623
624
625
626
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
627
628
629
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
630
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
631
        else:
632
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
633

634
635
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
636
            self.prompt = get_prompt(
637
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
638
            )
639
640
641
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
642
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
643
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
644
645
646
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
647
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
648

649
        if self.has_test_docs():
650
            self.task_docs = self.test_docs()
651
        elif self.has_validation_docs():
652
            self.task_docs = self.validation_docs()
653
654
655
656
657
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

658
        # Test One Doc
659
        self.features = list(self.task_docs.features.keys())
660
661
        self.multiple_input = 0
        self.multiple_target = 0
662
        test_doc = self.task_docs[0]
663
        test_text = self.doc_to_text(test_doc)
664
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
665

666
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
667
668
669
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
670
671
            else:
                num_choice = len(test_choice)
672

673
674
            if type(test_text) is int:
                self.multiple_input = num_choice
675
676
        else:
            test_choice = None
677

678
        if type(test_target) is list:
679
            self.multiple_target = len(test_target)
680
        else:
lintangsutawika's avatar
lintangsutawika committed
681
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
682
                test_target = test_choice[test_target]
683
            else:
lintangsutawika's avatar
lintangsutawika committed
684
                test_target = str(test_target)
685

686
687
688
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
689
            check_choices = [test_target]
690
691
692
693
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
694
695
696
697
                    True
                    if self.config.target_delimiter.rstrip()
                    == self.config.target_delimiter
                    else False
698
                )
699

700
701
702
703
704
705
706
707
708
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" does not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
                    )

Ethan Smith's avatar
Ethan Smith committed
709
    def download(self, dataset_kwargs=None) -> None:
710
711
712
713
714
715
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
716
    def has_training_docs(self) -> bool:
717
        if self.config.training_split is not None:
718
719
720
721
            return True
        else:
            return False

baberabb's avatar
baberabb committed
722
    def has_validation_docs(self) -> bool:
723
        if self.config.validation_split is not None:
724
725
726
727
            return True
        else:
            return False

baberabb's avatar
baberabb committed
728
    def has_test_docs(self) -> bool:
729
        if self.config.test_split is not None:
730
731
732
733
            return True
        else:
            return False

baberabb's avatar
baberabb committed
734
    def training_docs(self) -> datasets.Dataset:
735
        if self.has_training_docs():
736
737
738
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
739
                )
740
            return self.dataset[self.config.training_split]
741

baberabb's avatar
baberabb committed
742
    def validation_docs(self) -> datasets.Dataset:
743
        if self.has_validation_docs():
744
745
746
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
747
                )
748
            return self.dataset[self.config.validation_split]
749

baberabb's avatar
baberabb committed
750
    def test_docs(self) -> datasets.Dataset:
751
        if self.has_test_docs():
752
753
754
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
755

756
    def fewshot_docs(self):
757
758
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
759
        else:
760
            if self.config.num_fewshot > 0:
761
                eval_logger.warning(
762
                    f"Task '{self.config.task}': "
763
764
765
766
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
767

768
769
770
771
772
773
774
775
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

776
    def should_decontaminate(self):
777
        return self.config.should_decontaminate
778
779

    def doc_to_decontamination_query(self, doc):
780
781
782
        if self.config.should_decontaminate:
            if self.config.doc_to_decontamination_query in self.features:
                return doc[self.config.doc_to_decontamination_query]
783
784
            else:
                return ast.literal_eval(
785
                    utils.apply_template(self.config.doc_to_decontamination_query, doc)
786
                )
787

788
789
790
791
792
793
794
795
796
797
798
799
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
800
801
        if self.prompt is not None:
            doc_to_text = self.prompt
802
        else:
803
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
804

805
806
807
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
808
            if doc_to_text in self.features:
809
                # if self.config.doc_to_choice is not None:
810
811
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
812
813
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
814
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
815
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
816
817
818
                    return ast.literal_eval(text_string)
                else:
                    return text_string
819
        elif callable(doc_to_text):
820
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
821
        # Used when applying a Promptsource template
822
        elif hasattr(doc_to_text, "apply"):
823
824
825
826
827
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
828
                return self.config.fewshot_delimiter
829
        else:
830
            print(type(doc_to_text))
831
            raise TypeError
832

833
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
834
835
        if self.prompt is not None:
            doc_to_target = self.prompt
836
        else:
837
            doc_to_target = self.config.doc_to_target
838

839
840
841
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
842
            if doc_to_target in self.features:
843
                # if self.config.doc_to_choice is not None:
844
845
846
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
847
            else:
lintangsutawika's avatar
lintangsutawika committed
848
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
849
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
850
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
851
852
853
854
855
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
856
857
858
859
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
860
861
                else:
                    return target_string
862
863
        elif type(doc_to_target) == list:
            return doc_to_target
864
        elif callable(doc_to_target):
865
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
866
        # Used when applying a Promptsource template
867
        elif hasattr(doc_to_target, "apply"):
868
            applied_prompt = doc_to_target.apply(doc)
869
870
871
872
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
873
                return self.config.fewshot_delimiter
874
875
        else:
            raise TypeError
876

baberabb's avatar
baberabb committed
877
    def doc_to_choice(self, doc: Any) -> List[str]:
878
879
        if self.prompt is not None:
            doc_to_choice = self.prompt
880
        elif self.config.doc_to_choice is None:
881
882
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
883
            doc_to_choice = self.config.doc_to_choice
884
885
886
887
888
889
890
891
892
893
894
895
896

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
897

898
    def gold_alias(self, doc):
899
900
901
902
903
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
904
905
        if self.config.gold_alias is not None:
            doc_to_target = self.config.gold_alias
906
        else:
lintangsutawika's avatar
lintangsutawika committed
907
            return self.doc_to_target(doc)
908
909
910
911
912
913
914
915
916
917

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

baberabb's avatar
baberabb committed
918
919
920
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
921
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
922
            arguments = (ctx, self.doc_to_target(doc))
923
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
924
            arguments = (self.doc_to_target(doc),)
925
        elif self.OUTPUT_TYPE == "multiple_choice":
926
            choices = self.doc_to_choice(doc)
927
            target_delimiter = self.config.target_delimiter
928
929
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
930
                cont = self.doc_to_target(doc)
931
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
932
            else:
933
                # Otherwise they are placed in the continuation
934
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
935

936
            request_list = [
937
938
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
939
                    doc=doc,
940
                    arguments=arg,
941
                    idx=i,
942
943
                    **kwargs,
                )
944
                for i, arg in enumerate(arguments)
945
            ]
946
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
947
            if "acc_mutual_info" in self._metric_fn_list.keys():
948
949
950
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
951
                # here mutual info refers to calculating
952
953
954
955
956
957
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
958
                            doc=doc,
959
                            arguments=("", "{}".format(choice)),
960
961
962
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
963
                        for i, choice in enumerate(choices)
964
965
966
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
967

968
        elif self.OUTPUT_TYPE == "generate_until":
969
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
970
971

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
972
973
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
974
975

    def process_results(self, doc, results):
976
977
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
978

979
        result_dict = {}
980
        use_metric = list(self._metric_fn_list.keys())
981
982
983
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
984
985
986
987
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
988
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
989
            (loglikelihood,) = results
990
991
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
992
            return {
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1008
            }
1009
        elif self.OUTPUT_TYPE == "multiple_choice":
1010
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1011

1012
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1013
            choices = self.doc_to_choice(doc)
1014
1015
            completion_len = np.array([float(len(i)) for i in choices])

1016
1017
            if (
                2 * len(choices) == len(lls)
1018
                and "acc_mutual_info" in self._metric_fn_list.keys()
1019
1020
1021
1022
1023
1024
1025
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1026

1027
1028
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1029

1030
1031
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1032
            else:
1033
                gold = self.doc_to_target(doc)
1034
1035
1036

            gold_index_error = False
            if type(gold) is list:
Lintang Sutawika's avatar
Lintang Sutawika committed
1037
1038
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1039
1040
1041
                    gold_index_error = True
            else:
                if type(gold) is int:
Lintang Sutawika's avatar
Lintang Sutawika committed
1042
                    gold = gold if gold < len(choices) else -100
1043
                elif type(gold) is str:
Lintang Sutawika's avatar
Lintang Sutawika committed
1044
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1045

Lintang Sutawika's avatar
Lintang Sutawika committed
1046
                if gold == -100:
1047
1048
1049
1050
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1051
                    f"Label index was not in within range of available choices,"
1052
1053
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1054

1055
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1056
1057
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1058
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1059
1060
1061
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1062
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1063
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1064
1065

            result_dict = {
1066
                **({"acc": acc} if "acc" in use_metric else {}),
1067
1068
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1069
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1070
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1071
1072
            }

1073
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1074
1075
1076
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1077
1078
1079
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1080
        elif self.OUTPUT_TYPE == "generate_until":
1081
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1082
            result = results[0]
1083
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1084
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1085
                # it assumes that doc_to_target returns a number.
1086
1087
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1088
1089
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1090
                gold = list(gold)
Chris's avatar
Chris committed
1091
1092
1093
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1094

lintangsutawika's avatar
lintangsutawika committed
1095
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1096
1097
1098
1099
1100
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1101
1102
1103
1104
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1105
                    for gold_option in gold:
1106
                        try:
1107
                            result_score = self._metric_fn_list[metric](
1108
1109
                                references=[gold_option],
                                predictions=[result],
1110
                                **self._metric_fn_kwargs[metric],
1111
                            )
baberabb's avatar
baberabb committed
1112
1113
1114
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1115
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1116
1117
1118
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1119
                            # TODO: this handles the case where HF evaluate returns a dict.
1120
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1121
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1122
                    if any(scores):
1123
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1124
                    else:
1125
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1126
                else:
1127
                    try:
1128
                        result_score = self._metric_fn_list[metric](
1129
1130
                            references=[gold],
                            predictions=[result],
1131
                            **self._metric_fn_kwargs[metric],
1132
                        )
baberabb's avatar
baberabb committed
1133
1134
1135
                    except (
                        TypeError
                    ):  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1136
                        result_score = self._metric_fn_list[metric]([gold, result])
1137
1138
1139
1140
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1141
        else:
lintangsutawika's avatar
lintangsutawika committed
1142
1143
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1144
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1145
            )
1146
1147
1148
1149
1150
1151
1152

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1153
        return self._higher_is_better
1154
1155
1156
1157
1158


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1159
    def doc_to_target(self, doc: dict) -> str:
1160
1161
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1162
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1163
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1164
1165
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1166
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1167
                doc=doc,
1168
                arguments=(ctx, " {}".format(choice)),
1169
                idx=i,
1170
1171
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1172
1173
            for i, choice in enumerate(doc["choices"])
        ]
1174

baberabb's avatar
baberabb committed
1175
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1176
1177
1178
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1190
    def higher_is_better(self) -> dict:
1191
1192
1193
1194
1195
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1196
    def aggregation(self) -> dict:
1197
1198
1199
1200
1201
1202
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1203
class PerplexityTask(Task):
1204
1205
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1206
    def has_training_docs(self) -> bool:
1207
1208
        return False

baberabb's avatar
baberabb committed
1209
    def fewshot_examples(self, k: int, rnd) -> List:
1210
1211
1212
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1213
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1214
1215
1216
1217
1218
1219
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1220
    def higher_is_better(self) -> dict:
1221
1222
1223
1224
1225
1226
1227
1228
1229
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1230
    def doc_to_text(self, doc) -> str:
1231
1232
1233
1234
1235
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1236
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1237
1238
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1239
1240
1241
1242
1243
1244
1245
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1246

baberabb's avatar
baberabb committed
1247
    def process_results(self, doc: dict, results: float) -> dict:
1248
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1249
1250
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1251
1252
1253
1254
1255
1256
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1257
    def aggregation(self) -> dict:
1258
1259
1260
1261
1262
1263
1264
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1265
    def count_bytes(cls, doc) -> int:
1266
1267
1268
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1269
    def count_words(cls, doc) -> int:
1270
1271
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))