task.py 47.3 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
lintangsutawika's avatar
lintangsutawika committed
7
import logging
8
9
10
import evaluate
import random
import itertools
11
import functools
12
from tqdm import tqdm
13
14
15
16

import datasets
import numpy as np

baberabb's avatar
baberabb committed
17
from typing import Union, List, Any, Tuple, Literal
18
from collections.abc import Callable
19

20
from lm_eval import utils
21
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
22
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
23
from lm_eval.api.filter import FilterEnsemble
24
25
26

from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
    get_metric,
    get_aggregation,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
47
    "generate_until",
48
49
]

lintangsutawika's avatar
lintangsutawika committed
50

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
    task: str = None
58
    group: Union[str, list] = None
59
60
61
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
62
63
    dataset_path: str = None
    dataset_name: str = None
64
    dataset_kwargs: dict = None
65
66
67
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
68
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
69
70
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
71
    process_docs: Callable = None
72
73
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
74
    doc_to_choice: Union[Callable, str, dict, list] = None
75
    gold_alias: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
76
    process_results: Union[Callable, str] = None
77
    use_prompt: str = None
78
    description: str = ""
79
80
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
81
    fewshot_config: dict = None
82
    # runtime configuration options
83
    num_fewshot: int = 0
84
    # scoring options
85
    metric_list: list = None
86
    output_type: str = "generate_until"
87
    generation_kwargs: dict = None
88
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
89
    filter_list: Union[str, list] = None
90
91
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
92

lintangsutawika's avatar
lintangsutawika committed
93
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
94

Ethan Smith's avatar
Ethan Smith committed
95
    def __post_init__(self) -> None:
lintangsutawika's avatar
lintangsutawika committed
96
97
98
        if "." in self.dataset_path:
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
99

lintangsutawika's avatar
lintangsutawika committed
100
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
101

Lintang Sutawika's avatar
Lintang Sutawika committed
102
        if self.generation_kwargs is not None:
103
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
104
                eval_logger.warning(
105
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
106
                )
107
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
108
109
110
111
112
113
114

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
115
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
116
        else:
117
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
118
119
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
120
                    "until": None
121
122
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
123
124
                    "do_sample": False,
                }
125

haileyschoelkopf's avatar
haileyschoelkopf committed
126
127
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

128
129
130
    def __getitem__(self, item):
        return getattr(self, item)

131
132
133
    def __setitem__(self, item, value):
        return setattr(self, item, value)

134
    def to_dict(self):
135
136
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
137
        Used for dumping results alongside full task configuration
138

haileyschoelkopf's avatar
haileyschoelkopf committed
139
140
141
142
143
144
145
146
147
148
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
149
150
151
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
152
        return cfg_dict
153

154
155
156
157
158
159
160
161
162
163
164
165

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
166

167
168
169
170
171
172
173
174
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
175

176
177
178
179
180
181
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
182
    ) -> None:
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
209
        self._config = TaskConfig(**config) if config else TaskConfig()
210
211
212

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
213
            for name, components in self._config.get(
214
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
215
            ):
216
217
218
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
219
        self.sampler = samplers.Sampler(
220
221
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
222

Ethan Smith's avatar
Ethan Smith committed
223
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
248
249
250
251
252
253
254
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
255

256
257
258
259
260
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

297
298
299
300
301
302
303
304
305
306
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
307
            eval_logger.warning(
308
                "has_training_docs and has_validation_docs are False"
309
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
310
            )
311
312
            return self.test_docs()

313
314
315
316
317
318
319
320
321
322
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
323

324
325
326
327
328
329
330
331
332
333
334
335
336
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
337
    def doc_to_decontamination_query(self, doc) -> None:
338
339
340
341
342
343
344
345
346
347
348
349
350
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
351
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
352
353
354
355
356
357
358
359
360
361
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

362
        eval_logger.info(
363
            f"Building contexts for task '{self.config.task}' on rank {rank}..."
364
365
        )

366
        instances = []
367
368
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
369
        ):
370
            # sample fewshot context #TODO: need to offset doc_id by rank now!
371
            fewshot_ctx = self.fewshot_context(
372
                doc,
373
                self.config.num_fewshot,
374
            )
375

376
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
377
378
379
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
380
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
381
            )
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
407
            The number of times each instance in a dataset is inferred on. Defaults to 1,
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
443
444
445
446
447
448
449
450
451
452
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

453
    @utils.positional_deprecated
454
    def fewshot_context(self, doc, num_fewshot):
455
456
457
458
459
460
461
462
463
464
465
466
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
467
            # always prepend the (possibly empty) task description
468
            labeled_examples = self.config.description
469
        else:
470
            labeled_examples = self.config.description + self.sampler.get_context(
lintangsutawika's avatar
lintangsutawika committed
471
472
                doc, num_fewshot
            )
473
474

        example = self.doc_to_text(doc)
475
476
477
478
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
479
        elif type(example) == int:
480
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
481
482
483
484
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)
485
486

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
487
488
489
490
491
492
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
493

baberabb's avatar
baberabb committed
494
    def dump_config(self) -> dict:
495
        """Returns a dictionary representing the task's config.
496
497
498
499
500

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
501
        # (num_fewshot)
502
        return self.config.to_dict()
503

504
505

class ConfigurableTask(Task):
506
    VERSION = "Yaml"
507
    OUTPUT_TYPE = None
508
    CONFIG = None
509
510
511

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
512
    ) -> None:  # TODO no super() call here
513
        # Get pre-configured attributes
514
        self._config = self.CONFIG
515

516
        # Use new configurations if there was no preconfiguration
517
        if self.config is None:
518
            self._config = TaskConfig(**config)
519
520
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
521
            if config is not None:
522
                self._config.__dict__.update(config)
523

524
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
525
526
527
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
528

529
530
531
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
532

533
534
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
535

536
537
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
538

539
540
541
542
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
543

544
        if self.config.metric_list is None:
545
            # TODO: handle this in TaskConfig.__post_init__ ?
546
547
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

548
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
549
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
550
                self._metric_fn_kwargs[metric_name] = {}
551
552
553
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
554
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
555
        else:
556
            for metric_config in self.config.metric_list:
557
558
559
560
561
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
562
563
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
564
                }
Chris's avatar
Chris committed
565
566
567
568
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
569

570
                if self.config.process_results is not None:
571
572
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
573
574
575
576
577
578
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
579
580
581
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
582
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
583

584
                if "aggregation" in metric_config:
585
                    agg_name = metric_config["aggregation"]
586
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
587
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
588
589
590
591
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
592
                else:
593
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
594
                    metric_agg = get_metric_aggregation(metric_name)
595
                    eval_logger.warning(
baberabb's avatar
baberabb committed
596
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
597
598
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
599
                    )
600
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
601

602
603
604
605
606
607
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
608
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
609
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
610
                        f"higher_is_better={is_higher_better(metric_name)}"
611
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
612
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
613

614
        self.download(self.config.dataset_kwargs)
615
616
617
        self._training_docs = None
        self._fewshot_docs = None

618
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
619
            self._filters = []
620
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
621
622
623
624
625
626
627
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
628
629
630
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
631
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
632
        else:
633
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
634

635
636
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
637
            self.prompt = get_prompt(
638
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
639
            )
640
641
642
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
643
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
644
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
645
646
647
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
648
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
649

650
        if self.has_test_docs():
651
            self.task_docs = self.test_docs()
652
        elif self.has_validation_docs():
653
            self.task_docs = self.validation_docs()
654
655
656
657
658
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

659
        # Test One Doc
660
        self.features = list(self.task_docs.features.keys())
661
662
        self.multiple_input = 0
        self.multiple_target = 0
663
        test_doc = self.task_docs[0]
664
        test_text = self.doc_to_text(test_doc)
665
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
666

667
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
668
669
670
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
671
672
            else:
                num_choice = len(test_choice)
673

674
675
            if type(test_text) is int:
                self.multiple_input = num_choice
676
677
        else:
            test_choice = None
678

679
        if type(test_target) is list:
680
            self.multiple_target = len(test_target)
681
        else:
lintangsutawika's avatar
lintangsutawika committed
682
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
683
                test_target = test_choice[test_target]
684
            else:
lintangsutawika's avatar
lintangsutawika committed
685
                test_target = str(test_target)
686

687
688
689
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
690
            check_choices = [test_target]
691
692
693
694
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
695
696
                    True
                    if self.config.target_delimiter.rstrip()
697
                    != self.config.target_delimiter
698
                    else False
699
                )
700

701
702
703
704
705
706
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
707
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
708
709
                    )

Ethan Smith's avatar
Ethan Smith committed
710
    def download(self, dataset_kwargs=None) -> None:
711
712
713
714
715
716
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
717
    def has_training_docs(self) -> bool:
718
        if self.config.training_split is not None:
719
720
721
722
            return True
        else:
            return False

baberabb's avatar
baberabb committed
723
    def has_validation_docs(self) -> bool:
724
        if self.config.validation_split is not None:
725
726
727
728
            return True
        else:
            return False

baberabb's avatar
baberabb committed
729
    def has_test_docs(self) -> bool:
730
        if self.config.test_split is not None:
731
732
733
734
            return True
        else:
            return False

baberabb's avatar
baberabb committed
735
    def training_docs(self) -> datasets.Dataset:
736
        if self.has_training_docs():
737
738
739
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
740
                )
741
            return self.dataset[self.config.training_split]
742

baberabb's avatar
baberabb committed
743
    def validation_docs(self) -> datasets.Dataset:
744
        if self.has_validation_docs():
745
746
747
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
748
                )
749
            return self.dataset[self.config.validation_split]
750

baberabb's avatar
baberabb committed
751
    def test_docs(self) -> datasets.Dataset:
752
        if self.has_test_docs():
753
754
755
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
756

757
    def fewshot_docs(self):
758
759
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
760
        else:
761
            if self.config.num_fewshot > 0:
762
                eval_logger.warning(
763
                    f"Task '{self.config.task}': "
764
765
766
767
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
768

769
770
771
772
773
774
775
776
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

777
    def should_decontaminate(self):
778
        return self.config.should_decontaminate
779
780

    def doc_to_decontamination_query(self, doc):
781
782
783
        if self.config.should_decontaminate:
            if self.config.doc_to_decontamination_query in self.features:
                return doc[self.config.doc_to_decontamination_query]
784
785
            else:
                return ast.literal_eval(
786
                    utils.apply_template(self.config.doc_to_decontamination_query, doc)
787
                )
788

789
790
791
792
793
794
795
796
797
798
799
800
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
801
802
        if self.prompt is not None:
            doc_to_text = self.prompt
803
        else:
804
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
805

806
807
808
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
809
            if doc_to_text in self.features:
810
                # if self.config.doc_to_choice is not None:
811
812
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
813
814
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
815
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
816
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
817
818
819
                    return ast.literal_eval(text_string)
                else:
                    return text_string
820
        elif callable(doc_to_text):
821
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
822
        # Used when applying a Promptsource template
823
        elif hasattr(doc_to_text, "apply"):
824
825
826
827
828
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
829
                return self.config.fewshot_delimiter
830
        else:
831
            print(type(doc_to_text))
832
            raise TypeError
833

834
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
835
836
        if self.prompt is not None:
            doc_to_target = self.prompt
837
        else:
838
            doc_to_target = self.config.doc_to_target
839

840
841
842
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
843
            if doc_to_target in self.features:
844
                # if self.config.doc_to_choice is not None:
845
846
847
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
848
            else:
lintangsutawika's avatar
lintangsutawika committed
849
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
850
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
851
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
852
853
854
855
856
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
857
858
859
860
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
861
862
                else:
                    return target_string
863
864
        elif type(doc_to_target) == list:
            return doc_to_target
865
        elif callable(doc_to_target):
866
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
867
        # Used when applying a Promptsource template
868
        elif hasattr(doc_to_target, "apply"):
869
            applied_prompt = doc_to_target.apply(doc)
870
871
872
873
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
874
                return self.config.fewshot_delimiter
875
876
        else:
            raise TypeError
877

baberabb's avatar
baberabb committed
878
    def doc_to_choice(self, doc: Any) -> List[str]:
879
880
        if self.prompt is not None:
            doc_to_choice = self.prompt
881
        elif self.config.doc_to_choice is None:
882
883
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
884
            doc_to_choice = self.config.doc_to_choice
885
886
887
888
889
890
891
892
893
894
895
896
897

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
898

899
    def gold_alias(self, doc):
900
901
902
903
904
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
905
906
        if self.config.gold_alias is not None:
            doc_to_target = self.config.gold_alias
907
        else:
lintangsutawika's avatar
lintangsutawika committed
908
            return self.doc_to_target(doc)
909
910
911
912
913
914
915
916
917
918

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

baberabb's avatar
baberabb committed
919
920
921
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
922
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
923
            arguments = (ctx, self.doc_to_target(doc))
924
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
925
            arguments = (self.doc_to_target(doc),)
926
        elif self.OUTPUT_TYPE == "multiple_choice":
927
            choices = self.doc_to_choice(doc)
928
            target_delimiter = self.config.target_delimiter
929
930
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
931
                cont = self.doc_to_target(doc)
932
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
933
            else:
934
                # Otherwise they are placed in the continuation
935
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
936

937
            request_list = [
938
939
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
940
                    doc=doc,
941
                    arguments=arg,
942
                    idx=i,
943
944
                    **kwargs,
                )
945
                for i, arg in enumerate(arguments)
946
            ]
947
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
948
            if "acc_mutual_info" in self._metric_fn_list.keys():
949
950
951
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
952
                # here mutual info refers to calculating
953
954
955
956
957
958
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
959
                            doc=doc,
960
                            arguments=("", "{}".format(choice)),
961
962
963
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
964
                        for i, choice in enumerate(choices)
965
966
967
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
968

969
        elif self.OUTPUT_TYPE == "generate_until":
970
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
971
972

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
973
974
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
975
976

    def process_results(self, doc, results):
977
978
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
979

980
        result_dict = {}
981
        use_metric = list(self._metric_fn_list.keys())
982
983
984
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
985
986
987
988
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
989
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
990
            (loglikelihood,) = results
991
992
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
993
            return {
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1009
            }
1010
        elif self.OUTPUT_TYPE == "multiple_choice":
1011
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1012

1013
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1014
            choices = self.doc_to_choice(doc)
1015
1016
            completion_len = np.array([float(len(i)) for i in choices])

1017
1018
            if (
                2 * len(choices) == len(lls)
1019
                and "acc_mutual_info" in self._metric_fn_list.keys()
1020
1021
1022
1023
1024
1025
1026
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1027

1028
1029
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1030

1031
1032
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1033
            else:
1034
                gold = self.doc_to_target(doc)
1035
1036
1037

            gold_index_error = False
            if type(gold) is list:
Lintang Sutawika's avatar
Lintang Sutawika committed
1038
1039
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1040
1041
1042
                    gold_index_error = True
            else:
                if type(gold) is int:
Lintang Sutawika's avatar
Lintang Sutawika committed
1043
                    gold = gold if gold < len(choices) else -100
1044
                elif type(gold) is str:
Lintang Sutawika's avatar
Lintang Sutawika committed
1045
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1046

Lintang Sutawika's avatar
Lintang Sutawika committed
1047
                if gold == -100:
1048
1049
1050
1051
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1052
                    f"Label index was not in within range of available choices,"
1053
1054
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1055

1056
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1057
1058
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1059
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1060
1061
1062
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1063
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1064
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1065
1066

            result_dict = {
1067
                **({"acc": acc} if "acc" in use_metric else {}),
1068
1069
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1070
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1071
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1072
1073
            }

1074
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1075
1076
1077
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1078
1079
1080
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1081
        elif self.OUTPUT_TYPE == "generate_until":
1082
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1083
            result = results[0]
1084
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1085
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1086
                # it assumes that doc_to_target returns a number.
1087
1088
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1089
1090
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1091
                gold = list(gold)
Chris's avatar
Chris committed
1092
1093
1094
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1095

lintangsutawika's avatar
lintangsutawika committed
1096
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1097
1098
1099
1100
1101
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1102
1103
1104
1105
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1106
                    for gold_option in gold:
1107
                        try:
1108
                            result_score = self._metric_fn_list[metric](
1109
1110
                                references=[gold_option],
                                predictions=[result],
1111
                                **self._metric_fn_kwargs[metric],
1112
                            )
baberabb's avatar
baberabb committed
1113
1114
1115
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1116
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1117
1118
1119
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1120
                            # TODO: this handles the case where HF evaluate returns a dict.
1121
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1122
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1123
                    if any(scores):
1124
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1125
                    else:
1126
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1127
                else:
1128
                    try:
1129
                        result_score = self._metric_fn_list[metric](
1130
1131
                            references=[gold],
                            predictions=[result],
1132
                            **self._metric_fn_kwargs[metric],
1133
                        )
baberabb's avatar
baberabb committed
1134
1135
1136
                    except (
                        TypeError
                    ):  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1137
                        result_score = self._metric_fn_list[metric]([gold, result])
1138
1139
1140
1141
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1142
        else:
lintangsutawika's avatar
lintangsutawika committed
1143
1144
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1145
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1146
            )
1147
1148
1149
1150
1151
1152
1153

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1154
        return self._higher_is_better
1155
1156
1157
1158
1159


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1160
    def doc_to_target(self, doc: dict) -> str:
1161
1162
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1163
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1164
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1165
1166
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1167
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1168
                doc=doc,
1169
                arguments=(ctx, " {}".format(choice)),
1170
                idx=i,
1171
1172
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1173
1174
            for i, choice in enumerate(doc["choices"])
        ]
1175

baberabb's avatar
baberabb committed
1176
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1177
1178
1179
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1191
    def higher_is_better(self) -> dict:
1192
1193
1194
1195
1196
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1197
    def aggregation(self) -> dict:
1198
1199
1200
1201
1202
1203
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1204
class PerplexityTask(Task):
1205
1206
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1207
    def has_training_docs(self) -> bool:
1208
1209
        return False

baberabb's avatar
baberabb committed
1210
    def fewshot_examples(self, k: int, rnd) -> List:
1211
1212
1213
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1214
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1215
1216
1217
1218
1219
1220
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1221
    def higher_is_better(self) -> dict:
1222
1223
1224
1225
1226
1227
1228
1229
1230
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1231
    def doc_to_text(self, doc) -> str:
1232
1233
1234
1235
1236
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1237
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1238
1239
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1240
1241
1242
1243
1244
1245
1246
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1247

baberabb's avatar
baberabb committed
1248
    def process_results(self, doc: dict, results: float) -> dict:
1249
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1250
1251
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1252
1253
1254
1255
1256
1257
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1258
    def aggregation(self) -> dict:
1259
1260
1261
1262
1263
1264
1265
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1266
    def count_bytes(cls, doc) -> int:
1267
1268
1269
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1270
    def count_words(cls, doc) -> int:
1271
1272
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))