task.py 46.3 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

baberabb's avatar
baberabb committed
16
from typing import Union, List, Any, Tuple, Literal
17
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
36
37
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
47
48
49
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
55
    group: Union[str, list] = None
56
57
58
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
59
60
    dataset_path: str = None
    dataset_name: str = None
61
    dataset_kwargs: dict = None
62
63
64
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
65
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
66
67
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
68
    process_docs: Callable = None
69
70
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
71
    doc_to_choice: Union[Callable, str, dict, list] = None
72
    gold_alias: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
73
    process_results: Union[Callable, str] = None
74
    use_prompt: str = None
75
    description: str = ""
76
77
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
78
    # runtime configuration options
79
    num_fewshot: int = 0
80
    # scoring options
81
    metric_list: list = None
82
    output_type: str = "greedy_until"
83
    generation_kwargs: dict = None
84
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
85
    filter_list: Union[str, list] = None
86
87
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
88

lintangsutawika's avatar
lintangsutawika committed
89
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
90

Ethan Smith's avatar
Ethan Smith committed
91
    def __post_init__(self) -> None:
lintangsutawika's avatar
lintangsutawika committed
92
93
94
        if "." in self.dataset_path:
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
95

lintangsutawika's avatar
lintangsutawika committed
96
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
97

Lintang Sutawika's avatar
Lintang Sutawika committed
98
99
100
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
101
                    "passed `generation_kwargs`, but not using `output_type: greedy_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
102
                )
103
                assert self.output_type != "greedy_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
104
105
106
107
108
109
110

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
111
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
112
113
114
115
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
116
                    "until": None
117
118
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
119
120
                    "do_sample": False,
                }
121

haileyschoelkopf's avatar
haileyschoelkopf committed
122
123
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

124
125
126
    def __getitem__(self, item):
        return getattr(self, item)

127
128
129
    def __setitem__(self, item, value):
        return setattr(self, item, value)

130
    def to_dict(self):
131
132
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
133
        Used for dumping results alongside full task configuration
134

haileyschoelkopf's avatar
haileyschoelkopf committed
135
136
137
138
139
140
141
142
143
144
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
145
146
147
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
148
        return cfg_dict
149

150
151
152
153
154
155
156
157
158
159
160
161

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
162

163
164
165
166
167
168
169
170
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
171

172
173
174
175
176
177
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
178
    ) -> None:
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
205
        self._config = TaskConfig(**config) if config else TaskConfig()
206
207
208

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
209
            for name, components in self._config.get(
210
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
211
            ):
212
213
214
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
215
        self.sampler = samplers.Sampler(
216
217
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
218

Ethan Smith's avatar
Ethan Smith committed
219
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
244
245
246
247
248
249
250
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
251

252
253
254
255
256
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

293
294
295
296
297
298
299
300
301
302
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
303
            eval_logger.warning(
304
                "has_training_docs and has_validation_docs are False"
305
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
306
            )
307
308
            return self.test_docs()

309
310
311
312
313
314
315
316
317
318
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
319

320
321
322
323
324
325
326
327
328
329
330
331
332
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
333
    def doc_to_decontamination_query(self, doc) -> None:
334
335
336
337
338
339
340
341
342
343
344
345
346
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
347
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
348
349
350
351
352
353
354
355
356
357
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

358
        eval_logger.info(
359
            f"Building contexts for task '{self.config.task}' on rank {rank}..."
360
361
        )

362
        instances = []
363
364
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
365
        ):
366
            # sample fewshot context #TODO: need to offset doc_id by rank now!
367
            fewshot_ctx = self.fewshot_context(
368
                doc,
369
                self.config.num_fewshot,
370
            )
371

372
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
373
374
375
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
376
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
377
            )
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
403
            The number of times each instance in a dataset is inferred on. Defaults to 1,
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
439
440
441
442
443
444
445
446
447
448
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

449
    @utils.positional_deprecated
450
    def fewshot_context(self, doc, num_fewshot):
451
452
453
454
455
456
457
458
459
460
461
462
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
463
            # always prepend the (possibly empty) task description
464
            labeled_examples = self.config.description
465
        else:
466
            labeled_examples = self.config.description + self.sampler.get_context(
lintangsutawika's avatar
lintangsutawika committed
467
468
                doc, num_fewshot
            )
469
470

        example = self.doc_to_text(doc)
471
472
473
474
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
475
        elif type(example) == int:
476
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
477
478
479
480
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)
481
482

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
483
484
485
486
487
488
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
489

baberabb's avatar
baberabb committed
490
    def dump_config(self) -> dict:
491
        """Returns a dictionary representing the task's config.
492
493
494
495
496

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
497
        # (num_fewshot)
498
        return self.config.to_dict()
499

500
501

class ConfigurableTask(Task):
502
    VERSION = "Yaml"
503
    OUTPUT_TYPE = None
504
    CONFIG = None
505
506
507

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
508
    ) -> None:  # TODO no super() call here
509
        # Get pre-configured attributes
510
        self._config = self.CONFIG
511

512
        # Use new configurations if there was no preconfiguration
513
        if self.config is None:
514
            self._config = TaskConfig(**config)
515
516
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
517
            if config is not None:
518
                self._config.__dict__.update(config)
519

520
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
521
522
523
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
524

525
526
527
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
528

529
530
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
531

532
533
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
534

535
536
537
538
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
539

540
541
        _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]
        if self.config.metric_list is None:
542
            # TODO: handle this in TaskConfig.__post_init__ ?
543
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
544
545
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
546
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
547
548
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
549
        else:
550
            for metric_config in self.config.metric_list:
551
552
553
554
555
556
557
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
558

559
                if self.config.process_results is not None:
560
561
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
562
563
564
565
566
567
568
569
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
                    self._metric_fn_list[metric_name] = get_metric(metric_name)
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
570

571
                if "aggregation" in metric_config:
572
                    agg_name = metric_config["aggregation"]
573
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
574
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
575
576
577
578
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
579
                else:
580
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
581
                    metric_agg = get_default_aggregation(metric_name)
582
                    eval_logger.warning(
583
584
585
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
586
                    )
587
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
588

589
590
591
592
593
594
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
595
596
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
597
                        f"higher_is_better={is_higher_better(metric_name)}"
598
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
599
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
600

601
        self.download(self.config.dataset_kwargs)
602
603
604
        self._training_docs = None
        self._fewshot_docs = None

605
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
606
            self._filters = []
607
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
608
609
610
611
612
613
614
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
615
616
617
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
618
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
619
        else:
620
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
621

622
623
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
624
            self.prompt = get_prompt(
625
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
626
            )
627
628
629
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
630
631
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
632
                list(self.fewshot_docs()), self, rnd=random.Random(1234)
633
            )
634

635
        if self.has_test_docs():
636
            self.task_docs = self.test_docs()
637
        elif self.has_validation_docs():
638
            self.task_docs = self.validation_docs()
639
640
641
642
643
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

644
        # Test One Doc
645
        self.features = list(self.task_docs.features.keys())
646
647
        self.multiple_input = 0
        self.multiple_target = 0
648
        test_doc = self.task_docs[0]
649
        test_text = self.doc_to_text(test_doc)
650
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
651

652
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
653
654
655
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
656
657
            else:
                num_choice = len(test_choice)
658

659
660
            if type(test_text) is int:
                self.multiple_input = num_choice
661
662
        else:
            test_choice = None
663

664
        if type(test_target) is list:
665
            self.multiple_target = len(test_target)
666
        else:
lintangsutawika's avatar
lintangsutawika committed
667
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
668
                test_target = test_choice[test_target]
669
            else:
lintangsutawika's avatar
lintangsutawika committed
670
                test_target = str(test_target)
671

672
673
674
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
675
            check_choices = [test_target]
676
677
678
679
680
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
                    True if self.config.target_delimiter[-1].isspace() else False
681
                )
682

683
684
685
686
687
688
689
690
691
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" does not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
                    )

Ethan Smith's avatar
Ethan Smith committed
692
    def download(self, dataset_kwargs=None) -> None:
693
694
695
696
697
698
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
699
    def has_training_docs(self) -> bool:
700
        if self.config.training_split is not None:
701
702
703
704
            return True
        else:
            return False

baberabb's avatar
baberabb committed
705
    def has_validation_docs(self) -> bool:
706
        if self.config.validation_split is not None:
707
708
709
710
            return True
        else:
            return False

baberabb's avatar
baberabb committed
711
    def has_test_docs(self) -> bool:
712
        if self.config.test_split is not None:
713
714
715
716
            return True
        else:
            return False

baberabb's avatar
baberabb committed
717
    def training_docs(self) -> datasets.Dataset:
718
        if self.has_training_docs():
719
720
721
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
722
                )
723
            return self.dataset[self.config.training_split]
724

baberabb's avatar
baberabb committed
725
    def validation_docs(self) -> datasets.Dataset:
726
        if self.has_validation_docs():
727
728
729
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
730
                )
731
            return self.dataset[self.config.validation_split]
732

baberabb's avatar
baberabb committed
733
    def test_docs(self) -> datasets.Dataset:
734
        if self.has_test_docs():
735
736
737
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
738

739
    def fewshot_docs(self):
740
741
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
742
        else:
743
            if self.config.num_fewshot > 0:
744
                eval_logger.warning(
745
                    f"Task '{self.config.task}': "
746
747
748
749
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
750

751
752
753
754
755
756
757
758
759
    def apply_filters(self):

        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

760
    def should_decontaminate(self):
761
        return self.config.should_decontaminate
762
763

    def doc_to_decontamination_query(self, doc):
764
765
766
        if self.config.should_decontaminate:
            if self.config.doc_to_decontamination_query in self.features:
                return doc[self.config.doc_to_decontamination_query]
767
768
            else:
                return ast.literal_eval(
769
                    utils.apply_template(self.config.doc_to_decontamination_query, doc)
770
                )
771

772
773
774
775
776
777
778
779
780
781
782
783
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
784
785
        if self.prompt is not None:
            doc_to_text = self.prompt
786
        else:
787
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
788

789
790
791
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
792
            if doc_to_text in self.features:
793
                # if self.config.doc_to_choice is not None:
794
795
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
796
797
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
798
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
799
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
800
801
802
                    return ast.literal_eval(text_string)
                else:
                    return text_string
803
        elif callable(doc_to_text):
804
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
805
        # Used when applying a Promptsource template
806
        elif hasattr(doc_to_text, "apply"):
807
808
809
810
811
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
812
                return self.config.fewshot_delimiter
813
        else:
814
            print(type(doc_to_text))
815
            raise TypeError
816

817
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
818
819
        if self.prompt is not None:
            doc_to_target = self.prompt
820
        else:
821
            doc_to_target = self.config.doc_to_target
822

823
824
825
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
826
            if doc_to_target in self.features:
827
                # if self.config.doc_to_choice is not None:
828
829
830
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
831
            else:
lintangsutawika's avatar
lintangsutawika committed
832
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
833
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
834
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
835
836
837
838
839
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
840
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
841
842
                else:
                    return target_string
843
844
        elif type(doc_to_target) == list:
            return doc_to_target
845
        elif callable(doc_to_target):
846
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
847
        # Used when applying a Promptsource template
848
        elif hasattr(doc_to_target, "apply"):
849
            applied_prompt = doc_to_target.apply(doc)
850
851
852
853
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
854
                return self.config.fewshot_delimiter
855
856
        else:
            raise TypeError
857

baberabb's avatar
baberabb committed
858
    def doc_to_choice(self, doc: Any) -> List[str]:
859
860
        if self.prompt is not None:
            doc_to_choice = self.prompt
861
        elif self.config.doc_to_choice is None:
862
863
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
864
            doc_to_choice = self.config.doc_to_choice
865
866
867
868
869
870
871
872
873
874
875
876
877

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
878

879
    def gold_alias(self, doc):
880
881
882
883
884
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
885
886
        if self.config.gold_alias is not None:
            doc_to_target = self.config.gold_alias
887
        else:
lintangsutawika's avatar
lintangsutawika committed
888
            return self.doc_to_target(doc)
889
890
891
892
893
894
895
896
897
898

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

baberabb's avatar
baberabb committed
899
900
901
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
902
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
903
            arguments = (ctx, self.doc_to_target(doc))
904
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
905
            arguments = (self.doc_to_target(doc),)
906
        elif self.OUTPUT_TYPE == "multiple_choice":
907
            choices = self.doc_to_choice(doc)
908
            target_delimiter = self.config.target_delimiter
909
910
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
911
                cont = self.doc_to_target(doc)
912
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
913
            else:
914
                # Otherwise they are placed in the continuation
915
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
916

917
            request_list = [
918
919
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
920
                    doc=doc,
921
                    arguments=arg,
922
                    idx=i,
923
924
                    **kwargs,
                )
925
                for i, arg in enumerate(arguments)
926
            ]
927
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
928
            if "acc_mutual_info" in self._metric_fn_list.keys():
929
930
931
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
932
                # here mutual info refers to calculating
933
934
935
936
937
938
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
939
                            doc=doc,
940
                            arguments=("", "{}".format(choice)),
941
942
943
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
944
                        for i, choice in enumerate(choices)
945
946
947
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
948

949
        elif self.OUTPUT_TYPE == "greedy_until":
950
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
951
952

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
953
954
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
955
956
957

    def process_results(self, doc, results):

958
959
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
960

961
        result_dict = {}
962
        use_metric = list(self._metric_fn_list.keys())
963
964
965
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
966
967
968
969
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
970
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
971
            (loglikelihood,) = results
972
973
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
974
            return {
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
990
            }
991
        elif self.OUTPUT_TYPE == "multiple_choice":
992
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
993

994
            # retrieve choices in List[str] form, to compute choice lengths, etc.
995
            choices = self.doc_to_choice(doc)
996
997
            completion_len = np.array([float(len(i)) for i in choices])

998
999
            if (
                2 * len(choices) == len(lls)
1000
                and "acc_mutual_info" in self._metric_fn_list.keys()
1001
1002
1003
1004
1005
1006
1007
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1008

1009
1010
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1011

1012
1013
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1014
            else:
1015
                gold = self.doc_to_target(doc)
1016
1017
1018

            gold_index_error = False
            if type(gold) is list:
Lintang Sutawika's avatar
Lintang Sutawika committed
1019
1020
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1021
1022
1023
                    gold_index_error = True
            else:
                if type(gold) is int:
Lintang Sutawika's avatar
Lintang Sutawika committed
1024
                    gold = gold if gold < len(choices) else -100
1025
                elif type(gold) is str:
Lintang Sutawika's avatar
Lintang Sutawika committed
1026
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1027

Lintang Sutawika's avatar
Lintang Sutawika committed
1028
                if gold == -100:
1029
1030
1031
1032
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1033
                    f"Label index was not in within range of available choices,"
1034
1035
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1036

1037
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1038
1039
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1040
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1041
1042
1043
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1044
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1045
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1046
1047

            result_dict = {
1048
                **({"acc": acc} if "acc" in use_metric else {}),
1049
1050
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1051
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1052
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1053
1054
            }

1055
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1056
1057
1058
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1059
1060
1061
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1062
        elif self.OUTPUT_TYPE == "greedy_until":
1063
            gold = self.doc_to_target(doc)
1064
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1065
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1066
                # it assumes that doc_to_target returns a number.
1067
1068
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1069
1070
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1071
                gold = list(gold)
lintangsutawika's avatar
lintangsutawika committed
1072
1073
            else:
                gold = str(gold)
1074

lintangsutawika's avatar
lintangsutawika committed
1075
            result = results[0]
lintangsutawika's avatar
lintangsutawika committed
1076
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1077
1078
1079
1080
1081
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1082
1083
1084
1085
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1086
                    for gold_option in gold:
1087
                        try:
1088
                            result_score = self._metric_fn_list[metric](
1089
1090
                                references=[gold_option],
                                predictions=[result],
1091
                                **self._metric_fn_kwargs[metric],
1092
1093
                            )
                        except TypeError:  # TODO: this is hacky and I don't want to do it
1094
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1095
1096
1097
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1098
                            # TODO: this handles the case where HF evaluate returns a dict.
1099
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1100
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1101
                    if any(scores):
1102
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1103
                    else:
1104
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1105
                else:
1106
                    try:
1107
                        result_score = self._metric_fn_list[metric](
1108
1109
                            references=[gold],
                            predictions=[result],
1110
                            **self._metric_fn_kwargs[metric],
1111
                        )
1112
1113
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
                        result_score = self._metric_fn_list[metric]([gold, result])
1114
1115
1116
1117
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1118
        else:
lintangsutawika's avatar
lintangsutawika committed
1119
1120
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1121
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until' or 'multiple_choice'",
1122
            )
1123
1124
1125
1126
1127
1128
1129

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1130
        return self._higher_is_better
1131
1132
1133
1134
1135


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1136
    def doc_to_target(self, doc: dict) -> str:
1137
1138
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1139
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1140
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1141
1142
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1143
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1144
                doc=doc,
1145
                arguments=(ctx, " {}".format(choice)),
1146
                idx=i,
1147
1148
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1149
1150
            for i, choice in enumerate(doc["choices"])
        ]
1151

baberabb's avatar
baberabb committed
1152
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1153
1154
1155
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1167
    def higher_is_better(self) -> dict:
1168
1169
1170
1171
1172
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1173
    def aggregation(self) -> dict:
1174
1175
1176
1177
1178
1179
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1180
class PerplexityTask(Task):
1181
1182
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1183
    def has_training_docs(self) -> bool:
1184
1185
        return False

baberabb's avatar
baberabb committed
1186
    def fewshot_examples(self, k: int, rnd) -> List:
1187
1188
1189
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1190
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1191
1192
1193
1194
1195
1196
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1197
    def higher_is_better(self) -> dict:
1198
1199
1200
1201
1202
1203
1204
1205
1206
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1207
    def doc_to_text(self, doc) -> str:
1208
1209
1210
1211
1212
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1213
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1214
1215
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1216
1217
1218
1219
1220
1221
1222
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1223

baberabb's avatar
baberabb committed
1224
    def process_results(self, doc: dict, results: float) -> dict:
1225
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1226
1227
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1228
1229
1230
1231
1232
1233
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1234
    def aggregation(self) -> dict:
1235
1236
1237
1238
1239
1240
1241
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1242
    def count_bytes(cls, doc) -> int:
1243
1244
1245
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1246
    def count_words(cls, doc) -> int:
1247
1248
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))