task.py 47.1 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

baberabb's avatar
baberabb committed
16
from typing import Union, List, Any, Tuple, Literal
17
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
    get_metric,
    get_aggregation,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
47
    "generate_until",
48
49
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
55
    task_alias: str = None
56
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
57
    group_alias: Union[str, list] = None
58
59
60
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
61
62
    dataset_path: str = None
    dataset_name: str = None
63
    dataset_kwargs: dict = None
64
65
66
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
67
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
68
69
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
70
    process_docs: Callable = None
71
72
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
73
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
74
    process_results: Union[Callable, str] = None
75
    use_prompt: str = None
76
    description: str = ""
77
78
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
79
    fewshot_config: dict = None
80
    # runtime configuration options
81
    num_fewshot: int = 0
82
    # scoring options
83
    metric_list: list = None
84
    output_type: str = "generate_until"
85
    generation_kwargs: dict = None
86
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
87
    filter_list: Union[str, list] = None
88
89
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
90

lintangsutawika's avatar
lintangsutawika committed
91
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
92

Ethan Smith's avatar
Ethan Smith committed
93
    def __post_init__(self) -> None:
lintangsutawika's avatar
lintangsutawika committed
94
95
96
        if "." in self.dataset_path:
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
97

lintangsutawika's avatar
lintangsutawika committed
98
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
99

Lintang Sutawika's avatar
Lintang Sutawika committed
100
        if self.generation_kwargs is not None:
101
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
102
                eval_logger.warning(
103
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
104
                )
105
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
106
107
108
109
110
111
112

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
113
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
114
        else:
115
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
118
                    "until": None
119
120
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
121
122
                    "do_sample": False,
                }
123

haileyschoelkopf's avatar
haileyschoelkopf committed
124
125
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

126
127
128
    def __getitem__(self, item):
        return getattr(self, item)

129
130
131
    def __setitem__(self, item, value):
        return setattr(self, item, value)

132
    def to_dict(self):
133
134
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        Used for dumping results alongside full task configuration
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
141
142
143
144
145
146
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
147
148
149
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
150
        return cfg_dict
151

152
153
154
155
156
157
158
159
160
161
162
163

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
164

165
166
167
168
169
170
171
172
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
173

174
175
176
177
178
179
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
180
    ) -> None:
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
207
        self._config = TaskConfig(**config) if config else TaskConfig()
208
209
210

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
211
            for name, components in self._config.get(
212
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
213
            ):
214
215
216
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
217
        self.sampler = samplers.Sampler(
218
219
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
220

Ethan Smith's avatar
Ethan Smith committed
221
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
246
247
248
249
250
251
252
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
253

254
255
256
257
258
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

295
296
297
298
299
300
301
302
303
304
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
305
            eval_logger.warning(
306
                "has_training_docs and has_validation_docs are False"
307
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
308
            )
309
310
            return self.test_docs()

311
312
313
314
315
316
317
318
319
320
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
321

322
323
324
325
326
327
328
329
330
331
332
333
334
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
335
    def doc_to_decontamination_query(self, doc) -> None:
336
337
338
339
340
341
342
343
344
345
346
347
348
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
349
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
350
351
352
353
354
355
356
357
358
359
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

360
        eval_logger.info(
361
            f"Building contexts for task '{self.config.task}' on rank {rank}..."
362
363
        )

364
        instances = []
365
366
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
367
        ):
368
            # sample fewshot context #TODO: need to offset doc_id by rank now!
369
            fewshot_ctx = self.fewshot_context(
370
                doc,
371
                self.config.num_fewshot,
372
            )
373

374
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
375
376
377
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
378
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
379
            )
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
405
            The number of times each instance in a dataset is inferred on. Defaults to 1,
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
441
442
443
444
445
446
447
448
449
450
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

451
    @utils.positional_deprecated
452
    def fewshot_context(self, doc, num_fewshot):
453
454
455
456
457
458
459
460
461
462
463
464
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
465
            # always prepend the (possibly empty) task description
466
            labeled_examples = self.config.description
467
        else:
468
            labeled_examples = self.config.description + self.sampler.get_context(
lintangsutawika's avatar
lintangsutawika committed
469
470
                doc, num_fewshot
            )
471
472

        example = self.doc_to_text(doc)
473
474
475
476
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
477
        elif type(example) == int:
478
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
479
480
481
482
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)
483
484

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
485
486
487
488
489
490
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
491

baberabb's avatar
baberabb committed
492
    def dump_config(self) -> dict:
493
        """Returns a dictionary representing the task's config.
494
495
496
497
498

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
499
        # (num_fewshot)
500
        return self.config.to_dict()
501

502
503

class ConfigurableTask(Task):
504
    VERSION = "Yaml"
505
    OUTPUT_TYPE = None
506
    CONFIG = None
507
508
509

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
510
    ) -> None:  # TODO no super() call here
511
        # Get pre-configured attributes
512
        self._config = self.CONFIG
513

514
        # Use new configurations if there was no preconfiguration
515
        if self.config is None:
516
            self._config = TaskConfig(**config)
517
518
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
519
            if config is not None:
520
                self._config.__dict__.update(config)
521

522
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
523
524
525
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
526

527
528
529
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
530

531
532
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
533

534
535
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
536

537
538
539
540
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
541

542
        if self.config.metric_list is None:
543
            # TODO: handle this in TaskConfig.__post_init__ ?
544
545
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

546
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
547
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
548
                self._metric_fn_kwargs[metric_name] = {}
549
550
551
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
552
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
553
        else:
554
            for metric_config in self.config.metric_list:
555
556
557
558
559
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
560
561
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
562
                }
Chris's avatar
Chris committed
563
564
565
566
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
567

568
                if self.config.process_results is not None:
569
570
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
571
572
573
574
575
576
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
577
578
579
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
580
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
581

582
                if "aggregation" in metric_config:
583
                    agg_name = metric_config["aggregation"]
584
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
585
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
586
587
588
589
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
590
                else:
591
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
592
                    metric_agg = get_metric_aggregation(metric_name)
593
                    eval_logger.warning(
baberabb's avatar
baberabb committed
594
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
595
596
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
597
                    )
598
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
599

600
601
602
603
604
605
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
606
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
607
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
608
                        f"higher_is_better={is_higher_better(metric_name)}"
609
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
610
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
611

612
        self.download(self.config.dataset_kwargs)
613
614
615
        self._training_docs = None
        self._fewshot_docs = None

616
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
617
            self._filters = []
618
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
619
620
621
622
623
624
625
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
626
627
628
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
629
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
630
        else:
631
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
632

633
634
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
635
            self.prompt = get_prompt(
636
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
637
            )
638
639
640
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
641
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
642
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
643
644
645
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
646
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
647

648
        if self.has_test_docs():
649
            self.task_docs = self.test_docs()
650
        elif self.has_validation_docs():
651
            self.task_docs = self.validation_docs()
652
653
654
655
656
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

657
        # Test One Doc
658
        self.features = list(self.task_docs.features.keys())
659
660
        self.multiple_input = 0
        self.multiple_target = 0
661
        test_doc = self.task_docs[0]
662
        test_text = self.doc_to_text(test_doc)
663
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
664

665
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
666
667
668
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
669
670
            else:
                num_choice = len(test_choice)
671

672
673
            if type(test_text) is int:
                self.multiple_input = num_choice
674
675
        else:
            test_choice = None
676

677
        if type(test_target) is list:
678
            self.multiple_target = len(test_target)
679
        else:
lintangsutawika's avatar
lintangsutawika committed
680
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
681
                test_target = test_choice[test_target]
682
            else:
lintangsutawika's avatar
lintangsutawika committed
683
                test_target = str(test_target)
684

685
686
687
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
688
            check_choices = [test_target]
689
690
691
692
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
693
694
                    True
                    if self.config.target_delimiter.rstrip()
695
                    != self.config.target_delimiter
696
                    else False
697
                )
698

699
700
701
702
703
704
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
705
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
706
707
                    )

Ethan Smith's avatar
Ethan Smith committed
708
    def download(self, dataset_kwargs=None) -> None:
709
710
711
712
713
714
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
715
    def has_training_docs(self) -> bool:
716
        if self.config.training_split is not None:
717
718
719
720
            return True
        else:
            return False

baberabb's avatar
baberabb committed
721
    def has_validation_docs(self) -> bool:
722
        if self.config.validation_split is not None:
723
724
725
726
            return True
        else:
            return False

baberabb's avatar
baberabb committed
727
    def has_test_docs(self) -> bool:
728
        if self.config.test_split is not None:
729
730
731
732
            return True
        else:
            return False

baberabb's avatar
baberabb committed
733
    def training_docs(self) -> datasets.Dataset:
734
        if self.has_training_docs():
735
736
737
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
738
                )
739
            return self.dataset[self.config.training_split]
740

baberabb's avatar
baberabb committed
741
    def validation_docs(self) -> datasets.Dataset:
742
        if self.has_validation_docs():
743
744
745
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
746
                )
747
            return self.dataset[self.config.validation_split]
748

baberabb's avatar
baberabb committed
749
    def test_docs(self) -> datasets.Dataset:
750
        if self.has_test_docs():
751
752
753
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
754

755
    def fewshot_docs(self):
756
757
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
758
        else:
759
            if self.config.num_fewshot > 0:
760
                eval_logger.warning(
761
                    f"Task '{self.config.task}': "
762
763
764
765
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
766

767
768
769
770
771
772
773
774
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

775
    def should_decontaminate(self):
776
        return self.config.should_decontaminate
777
778

    def doc_to_decontamination_query(self, doc):
779
780
781
        if self.config.should_decontaminate:
            if self.config.doc_to_decontamination_query in self.features:
                return doc[self.config.doc_to_decontamination_query]
782
783
            else:
                return ast.literal_eval(
784
                    utils.apply_template(self.config.doc_to_decontamination_query, doc)
785
                )
786

787
788
789
790
791
792
793
794
795
796
797
798
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
799
800
        if self.prompt is not None:
            doc_to_text = self.prompt
801
        else:
802
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
803

804
805
806
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
807
            if doc_to_text in self.features:
808
                # if self.config.doc_to_choice is not None:
809
810
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
811
812
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
813
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
814
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
815
816
817
                    return ast.literal_eval(text_string)
                else:
                    return text_string
818
        elif callable(doc_to_text):
819
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
820
        # Used when applying a Promptsource template
821
        elif hasattr(doc_to_text, "apply"):
822
823
824
825
826
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
827
                return self.config.fewshot_delimiter
828
        else:
829
            print(type(doc_to_text))
830
            raise TypeError
831

832
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
833
834
        if self.prompt is not None:
            doc_to_target = self.prompt
835
        else:
836
            doc_to_target = self.config.doc_to_target
837

838
839
840
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
841
            if doc_to_target in self.features:
842
                # if self.config.doc_to_choice is not None:
843
844
845
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
846
            else:
lintangsutawika's avatar
lintangsutawika committed
847
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
848
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
849
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
850
851
852
853
854
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
855
856
857
858
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
859
860
                else:
                    return target_string
861
862
        elif type(doc_to_target) == list:
            return doc_to_target
863
        elif callable(doc_to_target):
864
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
865
        # Used when applying a Promptsource template
866
        elif hasattr(doc_to_target, "apply"):
867
            applied_prompt = doc_to_target.apply(doc)
868
869
870
871
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
872
                return self.config.fewshot_delimiter
873
874
        else:
            raise TypeError
875

baberabb's avatar
baberabb committed
876
    def doc_to_choice(self, doc: Any) -> List[str]:
877
878
        if self.prompt is not None:
            doc_to_choice = self.prompt
879
        elif self.config.doc_to_choice is None:
880
881
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
882
            doc_to_choice = self.config.doc_to_choice
883
884
885
886
887
888
889
890
891
892
893
894
895

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
896

baberabb's avatar
baberabb committed
897
898
899
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
900
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
901
            arguments = (ctx, self.doc_to_target(doc))
902
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
903
            arguments = (self.doc_to_target(doc),)
904
        elif self.OUTPUT_TYPE == "multiple_choice":
905
            choices = self.doc_to_choice(doc)
906
            target_delimiter = self.config.target_delimiter
907
908
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
909
                cont = self.doc_to_target(doc)
910
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
911
            else:
912
                # Otherwise they are placed in the continuation
913
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
914

915
            request_list = [
916
917
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
918
                    doc=doc,
919
                    arguments=arg,
920
                    idx=i,
921
922
                    **kwargs,
                )
923
                for i, arg in enumerate(arguments)
924
            ]
925
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
926
            if "acc_mutual_info" in self._metric_fn_list.keys():
927
928
929
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
930
                # here mutual info refers to calculating
931
932
933
934
935
936
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
937
                            doc=doc,
938
                            arguments=("", "{}".format(choice)),
939
940
941
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
942
                        for i, choice in enumerate(choices)
943
944
945
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
946

947
        elif self.OUTPUT_TYPE == "generate_until":
948
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
949
950

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
951
952
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
953
954

    def process_results(self, doc, results):
955
        if callable(self.config.process_results):
Lintang Sutawika's avatar
Lintang Sutawika committed
956
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
957

958
        result_dict = {}
959
        use_metric = list(self._metric_fn_list.keys())
960
961
962
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
963
964
            prob_norm = np.exp(ll)

965
966
967
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
968
969
970
971
972
                **(
                    {"brier_score": (0, [prob_norm])} # Gold is Index 0
                    if "brier_score" in use_metric
                    else {}
                ),
973
            }
974
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
975
            (loglikelihood,) = results
976
977
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
978
            return {
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
994
            }
995
        elif self.OUTPUT_TYPE == "multiple_choice":
996
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
997

998
            # retrieve choices in List[str] form, to compute choice lengths, etc.
999
            choices = self.doc_to_choice(doc)
1000
1001
            completion_len = np.array([float(len(i)) for i in choices])

1002
1003
            if (
                2 * len(choices) == len(lls)
1004
                and "acc_mutual_info" in self._metric_fn_list.keys()
1005
1006
1007
1008
1009
1010
1011
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1012

1013
1014
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1015

1016
1017
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1018
            else:
1019
                gold = self.doc_to_target(doc)
1020
1021
1022

            gold_index_error = False
            if type(gold) is list:
Lintang Sutawika's avatar
Lintang Sutawika committed
1023
1024
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1025
1026
1027
                    gold_index_error = True
            else:
                if type(gold) is int:
Lintang Sutawika's avatar
Lintang Sutawika committed
1028
                    gold = gold if gold < len(choices) else -100
1029
                elif type(gold) is str:
Lintang Sutawika's avatar
Lintang Sutawika committed
1030
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1031

Lintang Sutawika's avatar
Lintang Sutawika committed
1032
                if gold == -100:
1033
1034
1035
1036
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1037
                    f"Label index was not in within range of available choices,"
1038
1039
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1040

1041
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1042
1043
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1044
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1045
1046
1047
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1048
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1049
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1050

lintangsutawika's avatar
lintangsutawika committed
1051
            prob_norm = utils.softmax(lls)
lintangsutawika's avatar
lintangsutawika committed
1052

lintangsutawika's avatar
lintangsutawika committed
1053
            # TODO use keyword arguments to the metric?
lintangsutawika's avatar
format  
lintangsutawika committed
1054
            # gold, pred, norm stuff, the original lls,
1055
            result_dict = {
1056
                **({"acc": acc} if "acc" in use_metric else {}),
1057
1058
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1059
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1060
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
lintangsutawika's avatar
format  
lintangsutawika committed
1061
1062
1063
1064
1065
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1066
1067
            }

1068
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1069
1070
1071
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1072
1073
1074
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1075
        elif self.OUTPUT_TYPE == "generate_until":
1076
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1077
            result = results[0]
1078
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1079
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1080
                # it assumes that doc_to_target returns a number.
1081
1082
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1083
1084
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1085
                gold = list(gold)
Chris's avatar
Chris committed
1086
1087
1088
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1089

lintangsutawika's avatar
lintangsutawika committed
1090
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1091
1092
1093
1094
1095
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1096
1097
1098
1099
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1100
                    for gold_option in gold:
1101
                        try:
1102
                            result_score = self._metric_fn_list[metric](
1103
1104
                                references=[gold_option],
                                predictions=[result],
1105
                                **self._metric_fn_kwargs[metric],
1106
                            )
baberabb's avatar
baberabb committed
1107
1108
1109
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1110
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1111
1112
1113
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1114
                            # TODO: this handles the case where HF evaluate returns a dict.
1115
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1116
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1117
                    if any(scores):
1118
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1119
                    else:
1120
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1121
                else:
1122
                    try:
1123
                        result_score = self._metric_fn_list[metric](
1124
1125
                            references=[gold],
                            predictions=[result],
1126
                            **self._metric_fn_kwargs[metric],
1127
                        )
baberabb's avatar
baberabb committed
1128
1129
1130
                    except (
                        TypeError
                    ):  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1131
                        result_score = self._metric_fn_list[metric]([gold, result])
1132
1133
1134
1135
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1136
        else:
lintangsutawika's avatar
lintangsutawika committed
1137
1138
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1139
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1140
            )
1141
1142
1143
1144
1145
1146
1147

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1148
        return self._higher_is_better
1149
1150
1151
1152
1153


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1154
    def doc_to_target(self, doc: dict) -> str:
1155
1156
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1157
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1158
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1159
1160
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1161
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1162
                doc=doc,
1163
                arguments=(ctx, " {}".format(choice)),
1164
                idx=i,
1165
1166
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1167
1168
            for i, choice in enumerate(doc["choices"])
        ]
1169

baberabb's avatar
baberabb committed
1170
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1171
1172
1173
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1185
    def higher_is_better(self) -> dict:
1186
1187
1188
1189
1190
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1191
    def aggregation(self) -> dict:
1192
1193
1194
1195
1196
1197
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1198
class PerplexityTask(Task):
1199
1200
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1201
    def has_training_docs(self) -> bool:
1202
1203
        return False

baberabb's avatar
baberabb committed
1204
    def fewshot_examples(self, k: int, rnd) -> List:
1205
1206
1207
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1208
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1209
1210
1211
1212
1213
1214
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1215
    def higher_is_better(self) -> dict:
1216
1217
1218
1219
1220
1221
1222
1223
1224
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1225
    def doc_to_text(self, doc) -> str:
1226
1227
1228
1229
1230
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1231
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1232
1233
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1234
1235
1236
1237
1238
1239
1240
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1241

baberabb's avatar
baberabb committed
1242
    def process_results(self, doc: dict, results: float) -> dict:
1243
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1244
1245
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1246
1247
1248
1249
1250
1251
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1252
    def aggregation(self) -> dict:
1253
1254
1255
1256
1257
1258
1259
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1260
    def count_bytes(cls, doc) -> int:
1261
1262
1263
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1264
    def count_words(cls, doc) -> int:
1265
1266
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))