task.py 46.9 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

baberabb's avatar
baberabb committed
16
from typing import Union, List, Any, Tuple, Literal
17
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
36
37
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
47
48
49
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
55
    group: Union[str, list] = None
56
57
58
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
59
60
    dataset_path: str = None
    dataset_name: str = None
61
    dataset_kwargs: dict = None
62
63
64
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
65
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
66
67
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
68
    process_docs: Callable = None
69
70
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
71
    doc_to_choice: Union[Callable, str, dict, list] = None
72
    gold_alias: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
73
    process_results: Union[Callable, str] = None
74
    use_prompt: str = None
75
    description: str = ""
76
77
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
78
    fewshot_config: dict = None
79
    # runtime configuration options
80
    num_fewshot: int = 0
81
    # scoring options
82
    metric_list: list = None
83
    output_type: str = "greedy_until"
84
    generation_kwargs: dict = None
85
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
86
    filter_list: Union[str, list] = None
87
88
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
89

lintangsutawika's avatar
lintangsutawika committed
90
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
91

Ethan Smith's avatar
Ethan Smith committed
92
    def __post_init__(self) -> None:
lintangsutawika's avatar
lintangsutawika committed
93
94
95
        if "." in self.dataset_path:
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
96

lintangsutawika's avatar
lintangsutawika committed
97
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
98

Lintang Sutawika's avatar
Lintang Sutawika committed
99
100
101
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
102
                    "passed `generation_kwargs`, but not using `output_type: greedy_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
103
                )
104
                assert self.output_type != "greedy_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
105
106
107
108
109
110
111

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
112
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
113
114
115
116
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
117
                    "until": None
118
119
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
120
121
122
                    "do_sample": False,
                    "temperature": 0.0,
                }
123

haileyschoelkopf's avatar
haileyschoelkopf committed
124
125
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

126
127
128
    def __getitem__(self, item):
        return getattr(self, item)

129
130
131
    def __setitem__(self, item, value):
        return setattr(self, item, value)

132
    def to_dict(self):
133
134
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        Used for dumping results alongside full task configuration
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
141
142
143
144
145
146
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
147
148
149
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
150
        return cfg_dict
151

152
153
154
155
156
157
158
159
160
161
162
163

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
164

165
166
167
168
169
170
171
172
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
173

174
175
176
177
178
179
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
180
    ) -> None:
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
207
        self._config = TaskConfig(**config) if config else TaskConfig()
208
209
210

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
211
            for name, components in self._config.get(
212
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
213
            ):
214
215
216
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
217
        self.sampler = samplers.Sampler(
218
219
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
220

Ethan Smith's avatar
Ethan Smith committed
221
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
246
247
248
249
250
251
252
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
253

254
255
256
257
258
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

295
296
297
298
299
300
301
302
303
304
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
305
            eval_logger.warning(
306
                "has_training_docs and has_validation_docs are False"
307
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
308
            )
309
310
            return self.test_docs()

311
312
313
314
315
316
317
318
319
320
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
321

322
323
324
325
326
327
328
329
330
331
332
333
334
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
335
    def doc_to_decontamination_query(self, doc) -> None:
336
337
338
339
340
341
342
343
344
345
346
347
348
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
349
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
350
351
352
353
354
355
356
357
358
359
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

360
        eval_logger.info(
361
            f"Building contexts for task '{self.config.task}' on rank {rank}..."
362
363
        )

364
        instances = []
365
366
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
367
        ):
368
            # sample fewshot context #TODO: need to offset doc_id by rank now!
369
            fewshot_ctx = self.fewshot_context(
370
                doc,
371
                self.config.num_fewshot,
372
            )
373

374
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
375
376
377
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
378
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
379
            )
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
405
            The number of times each instance in a dataset is inferred on. Defaults to 1,
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
441
442
443
444
445
446
447
448
449
450
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

451
    @utils.positional_deprecated
452
    def fewshot_context(self, doc, num_fewshot):
453
454
455
456
457
458
459
460
461
462
463
464
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
465
            # always prepend the (possibly empty) task description
466
            labeled_examples = self.config.description
467
        else:
468
            labeled_examples = self.config.description + self.sampler.get_context(
lintangsutawika's avatar
lintangsutawika committed
469
470
                doc, num_fewshot
            )
471
472

        example = self.doc_to_text(doc)
473
474
475
476
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
477
        elif type(example) == int:
478
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
479
480
481
482
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)
483
484

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
485
486
487
488
489
490
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
491

baberabb's avatar
baberabb committed
492
    def dump_config(self) -> dict:
493
        """Returns a dictionary representing the task's config.
494
495
496
497
498

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
499
        # (num_fewshot)
500
        return self.config.to_dict()
501

502
503

class ConfigurableTask(Task):
504
    VERSION = "Yaml"
505
    OUTPUT_TYPE = None
506
    CONFIG = None
507
508
509

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
510
    ) -> None:  # TODO no super() call here
511
        # Get pre-configured attributes
512
        self._config = self.CONFIG
513

514
        # Use new configurations if there was no preconfiguration
515
        if self.config is None:
516
            self._config = TaskConfig(**config)
517
518
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
519
            if config is not None:
520
                self._config.__dict__.update(config)
521

522
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
523
524
525
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
526

527
528
529
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
530

531
532
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
533

534
535
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
536

537
538
539
540
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
541

542
543
        _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]
        if self.config.metric_list is None:
544
            # TODO: handle this in TaskConfig.__post_init__ ?
545
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
546
547
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
548
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
549
550
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
551
        else:
552
            for metric_config in self.config.metric_list:
553
554
555
556
557
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
558
                    if key not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
559
                }
560
                hf_evaluate_metric = "hf_evaluate" in metric_config and metric_config["hf_evaluate"] == True
561

562
                if self.config.process_results is not None:
563
564
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
565
566
567
568
569
570
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
571
                    self._metric_fn_list[metric_name] = get_metric(metric_name, hf_evaluate_metric)
572
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
573

574
                if "aggregation" in metric_config:
575
                    agg_name = metric_config["aggregation"]
576
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
577
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
578
579
580
581
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
582
                else:
583
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
584
                    metric_agg = get_default_aggregation(metric_name)
585
                    eval_logger.warning(
baberabb's avatar
baberabb committed
586
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
587
588
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
589
                    )
590
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
591

592
593
594
595
596
597
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
598
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
599
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
600
                        f"higher_is_better={is_higher_better(metric_name)}"
601
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
602
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
603

604
        self.download(self.config.dataset_kwargs)
605
606
607
        self._training_docs = None
        self._fewshot_docs = None

608
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
609
            self._filters = []
610
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
611
612
613
614
615
616
617
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
618
619
620
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
621
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
622
        else:
623
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
624

625
626
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
627
            self.prompt = get_prompt(
628
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
629
            )
630
631
632
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
633
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
634
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
635
636
637
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
638
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
639

640
        if self.has_test_docs():
641
            self.task_docs = self.test_docs()
642
        elif self.has_validation_docs():
643
            self.task_docs = self.validation_docs()
644
645
646
647
648
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

649
        # Test One Doc
650
        self.features = list(self.task_docs.features.keys())
651
652
        self.multiple_input = 0
        self.multiple_target = 0
653
        test_doc = self.task_docs[0]
654
        test_text = self.doc_to_text(test_doc)
655
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
656

657
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
658
659
660
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
661
662
            else:
                num_choice = len(test_choice)
663

664
665
            if type(test_text) is int:
                self.multiple_input = num_choice
666
667
        else:
            test_choice = None
668

669
        if type(test_target) is list:
670
            self.multiple_target = len(test_target)
671
        else:
lintangsutawika's avatar
lintangsutawika committed
672
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
673
                test_target = test_choice[test_target]
674
            else:
lintangsutawika's avatar
lintangsutawika committed
675
                test_target = str(test_target)
676

677
678
679
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
680
            check_choices = [test_target]
681
682
683
684
685
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
                    True if self.config.target_delimiter[-1].isspace() else False
686
                )
687

688
689
690
691
692
693
694
695
696
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" does not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
                    )

Ethan Smith's avatar
Ethan Smith committed
697
    def download(self, dataset_kwargs=None) -> None:
698
699
700
701
702
703
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
704
    def has_training_docs(self) -> bool:
705
        if self.config.training_split is not None:
706
707
708
709
            return True
        else:
            return False

baberabb's avatar
baberabb committed
710
    def has_validation_docs(self) -> bool:
711
        if self.config.validation_split is not None:
712
713
714
715
            return True
        else:
            return False

baberabb's avatar
baberabb committed
716
    def has_test_docs(self) -> bool:
717
        if self.config.test_split is not None:
718
719
720
721
            return True
        else:
            return False

baberabb's avatar
baberabb committed
722
    def training_docs(self) -> datasets.Dataset:
723
        if self.has_training_docs():
724
725
726
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
727
                )
728
            return self.dataset[self.config.training_split]
729

baberabb's avatar
baberabb committed
730
    def validation_docs(self) -> datasets.Dataset:
731
        if self.has_validation_docs():
732
733
734
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
735
                )
736
            return self.dataset[self.config.validation_split]
737

baberabb's avatar
baberabb committed
738
    def test_docs(self) -> datasets.Dataset:
739
        if self.has_test_docs():
740
741
742
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
743

744
    def fewshot_docs(self):
745
746
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
747
        else:
748
            if self.config.num_fewshot > 0:
749
                eval_logger.warning(
750
                    f"Task '{self.config.task}': "
751
752
753
754
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
755

756
757
758
759
760
761
762
763
764
    def apply_filters(self):

        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

765
    def should_decontaminate(self):
766
        return self.config.should_decontaminate
767
768

    def doc_to_decontamination_query(self, doc):
769
770
771
        if self.config.should_decontaminate:
            if self.config.doc_to_decontamination_query in self.features:
                return doc[self.config.doc_to_decontamination_query]
772
773
            else:
                return ast.literal_eval(
774
                    utils.apply_template(self.config.doc_to_decontamination_query, doc)
775
                )
776

777
778
779
780
781
782
783
784
785
786
787
788
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
789
790
        if self.prompt is not None:
            doc_to_text = self.prompt
791
        else:
792
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
793

794
795
796
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
797
            if doc_to_text in self.features:
798
                # if self.config.doc_to_choice is not None:
799
800
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
801
802
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
803
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
804
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
805
806
807
                    return ast.literal_eval(text_string)
                else:
                    return text_string
808
        elif callable(doc_to_text):
809
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
810
        # Used when applying a Promptsource template
811
        elif hasattr(doc_to_text, "apply"):
812
813
814
815
816
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
817
                return self.config.fewshot_delimiter
818
        else:
819
            print(type(doc_to_text))
820
            raise TypeError
821

822
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
823
824
        if self.prompt is not None:
            doc_to_target = self.prompt
825
        else:
826
            doc_to_target = self.config.doc_to_target
827

828
829
830
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
831
            if doc_to_target in self.features:
832
                # if self.config.doc_to_choice is not None:
833
834
835
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
836
            else:
lintangsutawika's avatar
lintangsutawika committed
837
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
838
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
839
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
840
841
842
843
844
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
845
846
847
848
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
849
850
                else:
                    return target_string
851
852
        elif type(doc_to_target) == list:
            return doc_to_target
853
        elif callable(doc_to_target):
854
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
855
        # Used when applying a Promptsource template
856
        elif hasattr(doc_to_target, "apply"):
857
            applied_prompt = doc_to_target.apply(doc)
858
859
860
861
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
862
                return self.config.fewshot_delimiter
863
864
        else:
            raise TypeError
865

baberabb's avatar
baberabb committed
866
    def doc_to_choice(self, doc: Any) -> List[str]:
867
868
        if self.prompt is not None:
            doc_to_choice = self.prompt
869
        elif self.config.doc_to_choice is None:
870
871
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
872
            doc_to_choice = self.config.doc_to_choice
873
874
875
876
877
878
879
880
881
882
883
884
885

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
886

887
    def gold_alias(self, doc):
888
889
890
891
892
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
893
894
        if self.config.gold_alias is not None:
            doc_to_target = self.config.gold_alias
895
        else:
lintangsutawika's avatar
lintangsutawika committed
896
            return self.doc_to_target(doc)
897
898
899
900
901
902
903
904
905
906

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

baberabb's avatar
baberabb committed
907
908
909
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
910
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
911
            arguments = (ctx, self.doc_to_target(doc))
912
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
913
            arguments = (self.doc_to_target(doc),)
914
        elif self.OUTPUT_TYPE == "multiple_choice":
915
            choices = self.doc_to_choice(doc)
916
            target_delimiter = self.config.target_delimiter
917
918
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
919
                cont = self.doc_to_target(doc)
920
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
921
            else:
922
                # Otherwise they are placed in the continuation
923
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
924

925
            request_list = [
926
927
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
928
                    doc=doc,
929
                    arguments=arg,
930
                    idx=i,
931
932
                    **kwargs,
                )
933
                for i, arg in enumerate(arguments)
934
            ]
935
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
936
            if "acc_mutual_info" in self._metric_fn_list.keys():
937
938
939
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
940
                # here mutual info refers to calculating
941
942
943
944
945
946
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
947
                            doc=doc,
948
                            arguments=("", "{}".format(choice)),
949
950
951
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
952
                        for i, choice in enumerate(choices)
953
954
955
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
956

957
        elif self.OUTPUT_TYPE == "greedy_until":
958
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
959
960

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
961
962
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
963
964
965

    def process_results(self, doc, results):

966
967
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
968

969
        result_dict = {}
970
        use_metric = list(self._metric_fn_list.keys())
971
972
973
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
974
975
976
977
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
978
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
979
            (loglikelihood,) = results
980
981
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
982
            return {
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
998
            }
999
        elif self.OUTPUT_TYPE == "multiple_choice":
1000
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1001

1002
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1003
            choices = self.doc_to_choice(doc)
1004
1005
            completion_len = np.array([float(len(i)) for i in choices])

1006
1007
            if (
                2 * len(choices) == len(lls)
1008
                and "acc_mutual_info" in self._metric_fn_list.keys()
1009
1010
1011
1012
1013
1014
1015
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1016

1017
1018
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1019

1020
1021
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1022
            else:
1023
                gold = self.doc_to_target(doc)
1024
1025
1026

            gold_index_error = False
            if type(gold) is list:
Lintang Sutawika's avatar
Lintang Sutawika committed
1027
1028
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1029
1030
1031
                    gold_index_error = True
            else:
                if type(gold) is int:
Lintang Sutawika's avatar
Lintang Sutawika committed
1032
                    gold = gold if gold < len(choices) else -100
1033
                elif type(gold) is str:
Lintang Sutawika's avatar
Lintang Sutawika committed
1034
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1035

Lintang Sutawika's avatar
Lintang Sutawika committed
1036
                if gold == -100:
1037
1038
1039
1040
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1041
                    f"Label index was not in within range of available choices,"
1042
1043
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1044

1045
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1046
1047
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1048
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1049
1050
1051
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1052
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1053
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1054
1055

            result_dict = {
1056
                **({"acc": acc} if "acc" in use_metric else {}),
1057
1058
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1059
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1060
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1061
1062
            }

1063
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1064
1065
1066
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1067
1068
1069
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1070
        elif self.OUTPUT_TYPE == "greedy_until":
1071
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1072
            result = results[0]
1073
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1074
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1075
                # it assumes that doc_to_target returns a number.
1076
1077
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1078
1079
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1080
                gold = list(gold)
Chris's avatar
Chris committed
1081
1082
1083
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1084

lintangsutawika's avatar
lintangsutawika committed
1085
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1086
1087
1088
1089
1090
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1091
1092
1093
1094
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1095
                    for gold_option in gold:
1096
                        try:
1097
                            result_score = self._metric_fn_list[metric](
1098
1099
                                references=[gold_option],
                                predictions=[result],
1100
                                **self._metric_fn_kwargs[metric],
1101
1102
                            )
                        except TypeError:  # TODO: this is hacky and I don't want to do it
1103
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1104
1105
1106
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1107
                            # TODO: this handles the case where HF evaluate returns a dict.
1108
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1109
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1110
                    if any(scores):
1111
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1112
                    else:
1113
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1114
                else:
1115
                    try:
1116
                        result_score = self._metric_fn_list[metric](
1117
1118
                            references=[gold],
                            predictions=[result],
1119
                            **self._metric_fn_kwargs[metric],
1120
                        )
1121
1122
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
                        result_score = self._metric_fn_list[metric]([gold, result])
1123
1124
1125
1126
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1127
        else:
lintangsutawika's avatar
lintangsutawika committed
1128
1129
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1130
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until' or 'multiple_choice'",
1131
            )
1132
1133
1134
1135
1136
1137
1138

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1139
        return self._higher_is_better
1140
1141
1142
1143
1144


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1145
    def doc_to_target(self, doc: dict) -> str:
1146
1147
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1148
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1149
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1150
1151
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1152
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1153
                doc=doc,
1154
                arguments=(ctx, " {}".format(choice)),
1155
                idx=i,
1156
1157
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1158
1159
            for i, choice in enumerate(doc["choices"])
        ]
1160

baberabb's avatar
baberabb committed
1161
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1162
1163
1164
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1176
    def higher_is_better(self) -> dict:
1177
1178
1179
1180
1181
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1182
    def aggregation(self) -> dict:
1183
1184
1185
1186
1187
1188
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1189
class PerplexityTask(Task):
1190
1191
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1192
    def has_training_docs(self) -> bool:
1193
1194
        return False

baberabb's avatar
baberabb committed
1195
    def fewshot_examples(self, k: int, rnd) -> List:
1196
1197
1198
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1199
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1200
1201
1202
1203
1204
1205
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1206
    def higher_is_better(self) -> dict:
1207
1208
1209
1210
1211
1212
1213
1214
1215
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1216
    def doc_to_text(self, doc) -> str:
1217
1218
1219
1220
1221
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1222
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1223
1224
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1225
1226
1227
1228
1229
1230
1231
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1232

baberabb's avatar
baberabb committed
1233
    def process_results(self, doc: dict, results: float) -> dict:
1234
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1235
1236
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1237
1238
1239
1240
1241
1242
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1243
    def aggregation(self) -> dict:
1244
1245
1246
1247
1248
1249
1250
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1251
    def count_bytes(cls, doc) -> int:
1252
1253
1254
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1255
    def count_words(cls, doc) -> int:
1256
1257
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))