task.py 46.5 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

baberabb's avatar
baberabb committed
16
from typing import Union, List, Any, Tuple, Literal
17
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
    get_metric,
    get_aggregation,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
47
    "generate_until",
48
49
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
55
    group: Union[str, list] = None
56
57
58
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
59
60
    dataset_path: str = None
    dataset_name: str = None
61
    dataset_kwargs: dict = None
62
63
64
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
65
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
66
67
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
68
    process_docs: Callable = None
69
70
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
71
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
72
    process_results: Union[Callable, str] = None
73
    use_prompt: str = None
74
    description: str = ""
75
76
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
77
    fewshot_config: dict = None
78
    # runtime configuration options
79
    num_fewshot: int = 0
80
    # scoring options
81
    metric_list: list = None
82
    output_type: str = "generate_until"
83
    generation_kwargs: dict = None
84
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
85
    filter_list: Union[str, list] = None
86
87
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
88

lintangsutawika's avatar
lintangsutawika committed
89
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
90

Ethan Smith's avatar
Ethan Smith committed
91
    def __post_init__(self) -> None:
lintangsutawika's avatar
lintangsutawika committed
92
93
94
        if "." in self.dataset_path:
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
95

lintangsutawika's avatar
lintangsutawika committed
96
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
97

Lintang Sutawika's avatar
Lintang Sutawika committed
98
        if self.generation_kwargs is not None:
99
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
100
                eval_logger.warning(
101
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
102
                )
103
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
104
105
106
107
108
109
110

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
111
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
112
        else:
113
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
114
115
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
116
                    "until": None
117
118
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
119
120
                    "do_sample": False,
                }
121

haileyschoelkopf's avatar
haileyschoelkopf committed
122
123
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

124
125
126
    def __getitem__(self, item):
        return getattr(self, item)

127
128
129
    def __setitem__(self, item, value):
        return setattr(self, item, value)

130
    def to_dict(self):
131
132
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
133
        Used for dumping results alongside full task configuration
134

haileyschoelkopf's avatar
haileyschoelkopf committed
135
136
137
138
139
140
141
142
143
144
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
145
146
147
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
148
        return cfg_dict
149

150
151
152
153
154
155
156
157
158
159
160
161

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
162

163
164
165
166
167
168
169
170
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
171

172
173
174
175
176
177
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
178
    ) -> None:
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
205
        self._config = TaskConfig(**config) if config else TaskConfig()
206
207
208

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
209
            for name, components in self._config.get(
210
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
211
            ):
212
213
214
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
215
        self.sampler = samplers.Sampler(
216
217
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
218

Ethan Smith's avatar
Ethan Smith committed
219
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
244
245
246
247
248
249
250
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
251

252
253
254
255
256
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

293
294
295
296
297
298
299
300
301
302
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
303
            eval_logger.warning(
304
                "has_training_docs and has_validation_docs are False"
305
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
306
            )
307
308
            return self.test_docs()

309
310
311
312
313
314
315
316
317
318
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
319

320
321
322
323
324
325
326
327
328
329
330
331
332
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
333
    def doc_to_decontamination_query(self, doc) -> None:
334
335
336
337
338
339
340
341
342
343
344
345
346
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
347
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
348
349
350
351
352
353
354
355
356
357
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

358
        eval_logger.info(
359
            f"Building contexts for task '{self.config.task}' on rank {rank}..."
360
361
        )

362
        instances = []
363
364
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
365
        ):
366
            # sample fewshot context #TODO: need to offset doc_id by rank now!
367
            fewshot_ctx = self.fewshot_context(
368
                doc,
369
                self.config.num_fewshot,
370
            )
371

372
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
373
374
375
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
376
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
377
            )
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
403
            The number of times each instance in a dataset is inferred on. Defaults to 1,
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
439
440
441
442
443
444
445
446
447
448
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

449
    @utils.positional_deprecated
450
    def fewshot_context(self, doc, num_fewshot):
451
452
453
454
455
456
457
458
459
460
461
462
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
463
            # always prepend the (possibly empty) task description
464
            labeled_examples = self.config.description
465
        else:
466
            labeled_examples = self.config.description + self.sampler.get_context(
lintangsutawika's avatar
lintangsutawika committed
467
468
                doc, num_fewshot
            )
469
470

        example = self.doc_to_text(doc)
471
472
473
474
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
475
        elif type(example) == int:
476
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
477
478
479
480
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)
481
482

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
483
484
485
486
487
488
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
489

baberabb's avatar
baberabb committed
490
    def dump_config(self) -> dict:
491
        """Returns a dictionary representing the task's config.
492
493
494
495
496

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
497
        # (num_fewshot)
498
        return self.config.to_dict()
499

500
501

class ConfigurableTask(Task):
502
    VERSION = "Yaml"
503
    OUTPUT_TYPE = None
504
    CONFIG = None
505
506
507

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
508
    ) -> None:  # TODO no super() call here
509
        # Get pre-configured attributes
510
        self._config = self.CONFIG
511

512
        # Use new configurations if there was no preconfiguration
513
        if self.config is None:
514
            self._config = TaskConfig(**config)
515
516
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
517
            if config is not None:
518
                self._config.__dict__.update(config)
519

520
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
521
522
523
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
524

525
526
527
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
528

529
530
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
531

532
533
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
534

535
536
537
538
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
539

540
        if self.config.metric_list is None:
541
            # TODO: handle this in TaskConfig.__post_init__ ?
542
543
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

544
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
545
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
546
                self._metric_fn_kwargs[metric_name] = {}
547
548
549
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
550
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
551
        else:
552
            for metric_config in self.config.metric_list:
553
554
555
556
557
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
558
559
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
560
                }
Chris's avatar
Chris committed
561
562
563
564
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
565

566
                if self.config.process_results is not None:
567
568
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
569
570
571
572
573
574
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
575
576
577
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
578
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
579

580
                if "aggregation" in metric_config:
581
                    agg_name = metric_config["aggregation"]
582
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
583
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
584
585
586
587
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
588
                else:
589
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
590
                    metric_agg = get_metric_aggregation(metric_name)
591
                    eval_logger.warning(
baberabb's avatar
baberabb committed
592
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
593
594
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
595
                    )
596
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
597

598
599
600
601
602
603
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
604
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
605
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
606
                        f"higher_is_better={is_higher_better(metric_name)}"
607
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
608
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
609

610
        self.download(self.config.dataset_kwargs)
611
612
613
        self._training_docs = None
        self._fewshot_docs = None

614
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
615
            self._filters = []
616
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
617
618
619
620
621
622
623
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
624
625
626
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
627
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
628
        else:
629
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
630

631
632
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
633
            self.prompt = get_prompt(
634
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
635
            )
636
637
638
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
639
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
640
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
641
642
643
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
644
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
645

646
        if self.has_test_docs():
647
            self.task_docs = self.test_docs()
648
        elif self.has_validation_docs():
649
            self.task_docs = self.validation_docs()
650
651
652
653
654
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

655
        # Test One Doc
656
        self.features = list(self.task_docs.features.keys())
657
658
        self.multiple_input = 0
        self.multiple_target = 0
659
        test_doc = self.task_docs[0]
660
        test_text = self.doc_to_text(test_doc)
661
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
662

663
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
664
665
666
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
667
668
            else:
                num_choice = len(test_choice)
669

670
671
            if type(test_text) is int:
                self.multiple_input = num_choice
672
673
        else:
            test_choice = None
674

675
        if type(test_target) is list:
676
            self.multiple_target = len(test_target)
677
        else:
lintangsutawika's avatar
lintangsutawika committed
678
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
679
                test_target = test_choice[test_target]
680
            else:
lintangsutawika's avatar
lintangsutawika committed
681
                test_target = str(test_target)
682

683
684
685
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
686
            check_choices = [test_target]
687
688
689
690
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
691
692
                    True
                    if self.config.target_delimiter.rstrip()
693
                    != self.config.target_delimiter
694
                    else False
695
                )
696

697
698
699
700
701
702
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
703
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
704
705
                    )

Ethan Smith's avatar
Ethan Smith committed
706
    def download(self, dataset_kwargs=None) -> None:
707
708
709
710
711
712
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
713
    def has_training_docs(self) -> bool:
714
        if self.config.training_split is not None:
715
716
717
718
            return True
        else:
            return False

baberabb's avatar
baberabb committed
719
    def has_validation_docs(self) -> bool:
720
        if self.config.validation_split is not None:
721
722
723
724
            return True
        else:
            return False

baberabb's avatar
baberabb committed
725
    def has_test_docs(self) -> bool:
726
        if self.config.test_split is not None:
727
728
729
730
            return True
        else:
            return False

baberabb's avatar
baberabb committed
731
    def training_docs(self) -> datasets.Dataset:
732
        if self.has_training_docs():
733
734
735
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
736
                )
737
            return self.dataset[self.config.training_split]
738

baberabb's avatar
baberabb committed
739
    def validation_docs(self) -> datasets.Dataset:
740
        if self.has_validation_docs():
741
742
743
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
744
                )
745
            return self.dataset[self.config.validation_split]
746

baberabb's avatar
baberabb committed
747
    def test_docs(self) -> datasets.Dataset:
748
        if self.has_test_docs():
749
750
751
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
752

753
    def fewshot_docs(self):
754
755
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
756
        else:
757
            if self.config.num_fewshot > 0:
758
                eval_logger.warning(
759
                    f"Task '{self.config.task}': "
760
761
762
763
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
764

765
766
767
768
769
770
771
772
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

773
    def should_decontaminate(self):
774
        return self.config.should_decontaminate
775
776

    def doc_to_decontamination_query(self, doc):
777
778
779
        if self.config.should_decontaminate:
            if self.config.doc_to_decontamination_query in self.features:
                return doc[self.config.doc_to_decontamination_query]
780
781
            else:
                return ast.literal_eval(
782
                    utils.apply_template(self.config.doc_to_decontamination_query, doc)
783
                )
784

785
786
787
788
789
790
791
792
793
794
795
796
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
797
798
        if self.prompt is not None:
            doc_to_text = self.prompt
799
        else:
800
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
801

802
803
804
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
805
            if doc_to_text in self.features:
806
                # if self.config.doc_to_choice is not None:
807
808
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
809
810
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
811
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
812
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
813
814
815
                    return ast.literal_eval(text_string)
                else:
                    return text_string
816
        elif callable(doc_to_text):
817
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
818
        # Used when applying a Promptsource template
819
        elif hasattr(doc_to_text, "apply"):
820
821
822
823
824
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
825
                return self.config.fewshot_delimiter
826
        else:
827
            print(type(doc_to_text))
828
            raise TypeError
829

830
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
831
832
        if self.prompt is not None:
            doc_to_target = self.prompt
833
        else:
834
            doc_to_target = self.config.doc_to_target
835

836
837
838
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
839
            if doc_to_target in self.features:
840
                # if self.config.doc_to_choice is not None:
841
842
843
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
844
            else:
lintangsutawika's avatar
lintangsutawika committed
845
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
846
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
847
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
848
849
850
851
852
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
853
854
855
856
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
857
858
                else:
                    return target_string
859
860
        elif type(doc_to_target) == list:
            return doc_to_target
861
        elif callable(doc_to_target):
862
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
863
        # Used when applying a Promptsource template
864
        elif hasattr(doc_to_target, "apply"):
865
            applied_prompt = doc_to_target.apply(doc)
866
867
868
869
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
870
                return self.config.fewshot_delimiter
871
872
        else:
            raise TypeError
873

baberabb's avatar
baberabb committed
874
    def doc_to_choice(self, doc: Any) -> List[str]:
875
876
        if self.prompt is not None:
            doc_to_choice = self.prompt
877
        elif self.config.doc_to_choice is None:
878
879
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
880
            doc_to_choice = self.config.doc_to_choice
881
882
883
884
885
886
887
888
889
890
891
892
893

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
894

baberabb's avatar
baberabb committed
895
896
897
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
898
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
899
            arguments = (ctx, self.doc_to_target(doc))
900
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
901
            arguments = (self.doc_to_target(doc),)
902
        elif self.OUTPUT_TYPE == "multiple_choice":
903
            choices = self.doc_to_choice(doc)
904
            target_delimiter = self.config.target_delimiter
905
906
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
907
                cont = self.doc_to_target(doc)
908
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
909
            else:
910
                # Otherwise they are placed in the continuation
911
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
912

913
            request_list = [
914
915
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
916
                    doc=doc,
917
                    arguments=arg,
918
                    idx=i,
919
920
                    **kwargs,
                )
921
                for i, arg in enumerate(arguments)
922
            ]
923
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
924
            if "acc_mutual_info" in self._metric_fn_list.keys():
925
926
927
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
928
                # here mutual info refers to calculating
929
930
931
932
933
934
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
935
                            doc=doc,
936
                            arguments=("", "{}".format(choice)),
937
938
939
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
940
                        for i, choice in enumerate(choices)
941
942
943
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
944

945
        elif self.OUTPUT_TYPE == "generate_until":
946
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
947
948

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
949
950
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
951
952

    def process_results(self, doc, results):
953
954
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
955

956
        result_dict = {}
957
        use_metric = list(self._metric_fn_list.keys())
958
959
960
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
961
962
963
964
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
965
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
966
            (loglikelihood,) = results
967
968
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
969
            return {
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
985
            }
986
        elif self.OUTPUT_TYPE == "multiple_choice":
987
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
988

989
            # retrieve choices in List[str] form, to compute choice lengths, etc.
990
            choices = self.doc_to_choice(doc)
991
992
            completion_len = np.array([float(len(i)) for i in choices])

993
994
            if (
                2 * len(choices) == len(lls)
995
                and "acc_mutual_info" in self._metric_fn_list.keys()
996
997
998
999
1000
1001
1002
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1003

1004
1005
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1006

1007
1008
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1009
            else:
1010
                gold = self.doc_to_target(doc)
1011
1012
1013

            gold_index_error = False
            if type(gold) is list:
Lintang Sutawika's avatar
Lintang Sutawika committed
1014
1015
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1016
1017
1018
                    gold_index_error = True
            else:
                if type(gold) is int:
Lintang Sutawika's avatar
Lintang Sutawika committed
1019
                    gold = gold if gold < len(choices) else -100
1020
                elif type(gold) is str:
Lintang Sutawika's avatar
Lintang Sutawika committed
1021
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1022

Lintang Sutawika's avatar
Lintang Sutawika committed
1023
                if gold == -100:
1024
1025
1026
1027
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1028
                    f"Label index was not in within range of available choices,"
1029
1030
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1031

1032
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1033
1034
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1035
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1036
1037
1038
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1039
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1040
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1041
1042

            result_dict = {
1043
                **({"acc": acc} if "acc" in use_metric else {}),
1044
1045
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1046
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1047
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1048
1049
            }

1050
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1051
1052
1053
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1054
1055
1056
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1057
        elif self.OUTPUT_TYPE == "generate_until":
1058
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1059
            result = results[0]
1060
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1061
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1062
                # it assumes that doc_to_target returns a number.
1063
1064
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1065
1066
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1067
                gold = list(gold)
Chris's avatar
Chris committed
1068
1069
1070
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1071

lintangsutawika's avatar
lintangsutawika committed
1072
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1073
1074
1075
1076
1077
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1078
1079
1080
1081
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1082
                    for gold_option in gold:
1083
                        try:
1084
                            result_score = self._metric_fn_list[metric](
1085
1086
                                references=[gold_option],
                                predictions=[result],
1087
                                **self._metric_fn_kwargs[metric],
1088
                            )
baberabb's avatar
baberabb committed
1089
1090
1091
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1092
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1093
1094
1095
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1096
                            # TODO: this handles the case where HF evaluate returns a dict.
1097
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1098
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1099
                    if any(scores):
1100
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1101
                    else:
1102
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1103
                else:
1104
                    try:
1105
                        result_score = self._metric_fn_list[metric](
1106
1107
                            references=[gold],
                            predictions=[result],
1108
                            **self._metric_fn_kwargs[metric],
1109
                        )
baberabb's avatar
baberabb committed
1110
1111
1112
                    except (
                        TypeError
                    ):  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1113
                        result_score = self._metric_fn_list[metric]([gold, result])
1114
1115
1116
1117
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1118
        else:
lintangsutawika's avatar
lintangsutawika committed
1119
1120
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1121
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1122
            )
1123
1124
1125
1126
1127
1128
1129

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1130
        return self._higher_is_better
1131
1132
1133
1134
1135


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1136
    def doc_to_target(self, doc: dict) -> str:
1137
1138
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1139
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1140
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1141
1142
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1143
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1144
                doc=doc,
1145
                arguments=(ctx, " {}".format(choice)),
1146
                idx=i,
1147
1148
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1149
1150
            for i, choice in enumerate(doc["choices"])
        ]
1151

baberabb's avatar
baberabb committed
1152
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1153
1154
1155
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1167
    def higher_is_better(self) -> dict:
1168
1169
1170
1171
1172
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1173
    def aggregation(self) -> dict:
1174
1175
1176
1177
1178
1179
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1180
class PerplexityTask(Task):
1181
1182
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1183
    def has_training_docs(self) -> bool:
1184
1185
        return False

baberabb's avatar
baberabb committed
1186
    def fewshot_examples(self, k: int, rnd) -> List:
1187
1188
1189
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1190
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1191
1192
1193
1194
1195
1196
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1197
    def higher_is_better(self) -> dict:
1198
1199
1200
1201
1202
1203
1204
1205
1206
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1207
    def doc_to_text(self, doc) -> str:
1208
1209
1210
1211
1212
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1213
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1214
1215
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1216
1217
1218
1219
1220
1221
1222
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1223

baberabb's avatar
baberabb committed
1224
    def process_results(self, doc: dict, results: float) -> dict:
1225
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1226
1227
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1228
1229
1230
1231
1232
1233
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1234
    def aggregation(self) -> dict:
1235
1236
1237
1238
1239
1240
1241
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1242
    def count_bytes(cls, doc) -> int:
1243
1244
1245
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1246
    def count_words(cls, doc) -> int:
1247
1248
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))