test_modeling_common.py 41.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import inspect
18
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import random
20
import tempfile
thomwolf's avatar
thomwolf committed
21
import unittest
22
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
23

24
from transformers import is_torch_available
25
from transformers.file_utils import WEIGHTS_NAME
26
from transformers.testing_utils import require_torch, require_torch_multigpu, slow, torch_device
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_torch_available():
30
    import numpy as np
31
    import torch
thomwolf's avatar
thomwolf committed
32

33
    from transformers import (
34
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
35
36
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
37
38
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
39
40
41
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
42
43
44
45
46
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PretrainedConfig,
        PreTrainedModel,
47
    )
thomwolf's avatar
thomwolf committed
48

49

50
51
52
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
53
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
54
            setattr(configs_no_init, key, 1e-10)
55
56
    return configs_no_init

thomwolf's avatar
thomwolf committed
57

58
59
60
61
62
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
63
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
64
65
66
67
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
68
    test_missing_keys = True
69
70
    is_encoder_decoder = False

71
72
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
73
        if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
74
            inputs_dict = {
75
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
76
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
77
                else v
78
79
                for k, v in inputs_dict.items()
            }
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

        if return_labels:
            if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
            elif model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values():
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
                *MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *MODEL_FOR_MASKED_LM_MAPPING.values(),
                *MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
104
105
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
106
    def test_save_load(self):
107
108
109
110
111
112
113
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
114
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
115

116
            out_2 = outputs[0].cpu().numpy()
117
            out_2[np.isnan(out_2)] = 0
118

119
            with tempfile.TemporaryDirectory() as tmpdirname:
120
121
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
122
                model.to(torch_device)
123
                with torch.no_grad():
124
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
125

126
127
128
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
129
130
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    def test_save_load_keys_to_never_save(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            keys_to_never_save = getattr(model, "keys_to_never_save", None)
            if keys_to_never_save is None:
                continue

            # check the keys are in the original state_dict
            for k in keys_to_never_save:
                self.assertIn(k, model.state_dict())

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
                for k in keys_to_never_save:
                    self.assertNotIn(k, state_dict_saved)

Patrick von Platen's avatar
Patrick von Platen committed
153
    def test_initialization(self):
154
155
156
157
158
159
160
161
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
162
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
163
164
165
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
166

Patrick von Platen's avatar
Patrick von Platen committed
167
    def test_determinism(self):
168
169
170
171
172
173
174
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
175
176
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
177

178
179
180
181
182
183
184
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                    "encoder_outputs",
                ]
                self.assertListEqual(arg_names[:5], expected_arg_names)
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

Patrick von Platen's avatar
Patrick von Platen committed
207
    def test_attention_outputs(self):
208
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Weizhen's avatar
Weizhen committed
209
210
        config.return_dict = True

sshleifer's avatar
sshleifer committed
211
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
212
213
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
Weizhen's avatar
Weizhen committed
214
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
215
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
216
217
218
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
219
220

        for model_class in self.all_model_classes:
221
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
222
            inputs_dict["output_hidden_states"] = False
223
            config.return_dict = True
224
225
226
227
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
228
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
229
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
230
231
232
233
234
235
236
237
238
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
239
240
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
241
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
242
243
244
245
246
247
248
249
250
251
252

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
253
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
254

255
            if self.is_encoder_decoder:
256
                correct_outlen = 5
257

258
259
260
261
262
263
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
                if model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
Weizhen's avatar
Weizhen committed
264

Sam Shleifer's avatar
Sam Shleifer committed
265
266
                self.assertEqual(out_len, correct_outlen)

267
                # decoder attentions
268
                decoder_attentions = outputs.decoder_attentions
Sam Shleifer's avatar
Sam Shleifer committed
269
                self.assertIsInstance(decoder_attentions, (list, tuple))
270
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
271
                self.assertListEqual(
272
273
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
274
                )
thomwolf's avatar
thomwolf committed
275

276
277
278
279
280
281
282
283
284
285
286
287
288
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

289
            # Check attention is always last and order is fine
290
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
291
            inputs_dict["output_hidden_states"] = True
292
293
294
295
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
296
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
297

Weizhen's avatar
Weizhen committed
298
299
300
301
302
303
304
305
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

306
307
            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

308
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
309
310
311
312
313
314
315
316
317
318
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
319

Patrick von Platen's avatar
Patrick von Platen committed
320
    def test_torchscript(self):
321
322
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
323

Patrick von Platen's avatar
Patrick von Platen committed
324
    def test_torchscript_output_attentions(self):
325
326
327
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
328

Patrick von Platen's avatar
Patrick von Platen committed
329
    def test_torchscript_output_hidden_state(self):
330
331
332
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
333

334
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
335
        if not self.test_torchscript:
336
            return
337

338
339
340
341
342
343
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
344
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
345

346
            try:
347
348
349
350
351
352
353
354
355
356
357
358
359
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # TODO: this should be deleted after bug #7474 is solved
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]

                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
360
361
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
362

363
            with tempfile.TemporaryDirectory() as tmp_dir_name:
364
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
365

366
                try:
367
                    torch.jit.save(traced_model, pt_file_name)
368
369
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
370

371
372
373
374
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
375

376
377
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
378

379
380
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
381

382
383
384
385
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
386

387
            models_equal = True
388
389
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
390
391
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
392

393
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
394

Patrick von Platen's avatar
Patrick von Platen committed
395
396
    def test_headmasking(self):
        if not self.test_head_masking:
397
            return
398

399
400
401
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
402

403
        inputs_dict["output_attentions"] = True
404
405
406
407
408
409
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
410

411
412
413
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
414
415
416
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
417
418
419
420
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
421
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
            inputs["head_mask"] = head_mask

            outputs = model(**inputs)

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

Patrick von Platen's avatar
Patrick von Platen committed
451
452
    def test_head_pruning(self):
        if not self.test_pruning:
453
454
455
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
456
457
458
459
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
460

461
462
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
463

464
            inputs_dict["output_attentions"] = True
465
466
467
468
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
469
470
471
472
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
473
474
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
475
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
476

477
            attentions = outputs[-1]
478

479
480
481
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
482

Patrick von Platen's avatar
Patrick von Platen committed
483
484
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
485
            return
LysandreJik's avatar
LysandreJik committed
486

487
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
488
489
490
491
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
492
493
494

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
495

496
            inputs_dict["output_attentions"] = True
497
498
499
500
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
501
502
503
504
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
505
            model.prune_heads(heads_to_prune)
506

507
            with tempfile.TemporaryDirectory() as temp_dir_name:
508
509
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
510
                model.to(torch_device)
511

512
            with torch.no_grad():
513
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
514
515
516
517
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
518

Patrick von Platen's avatar
Patrick von Platen committed
519
520
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
521
            return
522

523
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
524
525
526
527
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
528

529
530
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
531

532
            inputs_dict["output_attentions"] = True
533
            config.output_hidden_states = False
534

535
536
537
538
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
539
            config.pruned_heads = heads_to_prune
540

541
542
543
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
544

545
            with torch.no_grad():
546
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
547
            attentions = outputs[-1]
548

549
550
551
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
552

Patrick von Platen's avatar
Patrick von Platen committed
553
554
    def test_head_pruning_integration(self):
        if not self.test_pruning:
555
            return
556

557
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
558
559
560
561
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
562

563
564
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
565

566
            inputs_dict["output_attentions"] = True
567
            config.output_hidden_states = False
568

569
570
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
571

572
573
574
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
575

576
            with torch.no_grad():
577
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
578
            attentions = outputs[-1]
579

580
581
582
583
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
584

585
            with tempfile.TemporaryDirectory() as temp_dir_name:
586
587
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
588
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
589

590
            with torch.no_grad():
591
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
592
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
593

594
595
596
597
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
598

599
600
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
601

602
            with torch.no_grad():
603
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
604
            attentions = outputs[-1]
605

606
607
608
609
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
610

611
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
612

Patrick von Platen's avatar
Patrick von Platen committed
613
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
614
        def check_hidden_states_output(inputs_dict, config, model_class):
615
            model = model_class(config)
616
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
617
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
618

thomwolf's avatar
thomwolf committed
619
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
620
621
                outputs = model(**self._prepare_for_class(inputs_dict, model_class), return_dict=True)
            hidden_states = outputs["hidden_states"] if "hidden_states" in outputs else outputs[-1]
Patrick von Platen's avatar
Patrick von Platen committed
622

Sylvain Gugger's avatar
Sylvain Gugger committed
623
624
625
626
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
Patrick von Platen's avatar
Patrick von Platen committed
627
628
629
630
631
632
633
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

634
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
635
636
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
637
            )
thomwolf's avatar
thomwolf committed
638

Joseph Liu's avatar
Joseph Liu committed
639
640
641
642
643
644
645
646
647
648
649
650
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

Pradhy729's avatar
Pradhy729 committed
651
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
652
653
654
655
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
674
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
675
676
677
678
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
679
        if not self.test_resize_embeddings:
680
681
682
683
684
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
685
            model.to(torch_device)
686

Patrick von Platen's avatar
Patrick von Platen committed
687
688
689
            if self.model_tester.is_training is False:
                model.eval()

690
691
692
693
694
695
696
697
698
699
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
700
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
701
            model(**self._prepare_for_class(inputs_dict, model_class))
702
703
704
705
706
707
708

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

709
710
711
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
712
            model(**self._prepare_for_class(inputs_dict, model_class))
713

714
715
716
717
718
719
720
721
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
722
    def test_model_common_attributes(self):
723
724
725
726
727
728
729
730
731
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

732
    def test_correct_missing_keys(self):
733
734
        if not self.test_missing_keys:
            return
735
736
737
738
739
740
741
742
743
744
745
746
747
748
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

797
798
799
800
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
801
802
803
804
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

805
806
807
808
809
810
811
812
813
814
815
816
817
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
818
819
820
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
821
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

Patrick von Platen's avatar
Patrick von Platen committed
861
    def test_inputs_embeds(self):
Sam Shleifer's avatar
Sam Shleifer committed
862

863
864
865
866
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
867
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
868
            model.eval()
869

870
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
871

872
873
874
875
876
877
878
879
880
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

881
882
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
883
                inputs["inputs_embeds"] = wte(input_ids)
884
            else:
885
886
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
887

thomwolf's avatar
thomwolf committed
888
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
889
                model(**inputs)[0]
890

891
    @require_torch_multigpu
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
    def test_multigpu_data_parallel_forward(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
        blacklist_non_batched_params = ["head_mask"]
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
914
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
915

916

917
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
918
919


thomwolf's avatar
thomwolf committed
920
def ids_tensor(shape, vocab_size, rng=None, name=None):
921
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
922
    if rng is None:
923
        rng = global_rng
thomwolf's avatar
thomwolf committed
924

thomwolf's avatar
thomwolf committed
925
926
927
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
928

thomwolf's avatar
thomwolf committed
929
930
931
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
932

933
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
934
935


936
937
938
939
940
941
942
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


943
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
944
    """Creates a random float32 tensor"""
945
946
947
948
949
950
951
952
953
954
955
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

956
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
957
958


959
@require_torch
thomwolf's avatar
thomwolf committed
960
class ModelUtilsTest(unittest.TestCase):
961
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
962
    def test_model_from_pretrained(self):
963
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
964
965
966
967
968
969
970
971
972
973
974
975
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
976
977
978
979

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
980
981
982
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)