modeling_openai.py 44.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
22
import copy
import json
thomwolf's avatar
thomwolf committed
23
import logging
24
25
import math
import os
thomwolf's avatar
thomwolf committed
26
27
import sys
from io import open
thomwolf's avatar
thomwolf committed
28
29
30

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
31
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
32
33
from torch.nn.parameter import Parameter

34
from .file_utils import cached_path, CONFIG_NAME, WEIGHTS_NAME
35
from .modeling import BertLayerNorm as LayerNorm
36
from .modeling_gpt2 import prune_conv1d_layer
thomwolf's avatar
thomwolf committed
37

thomwolf's avatar
thomwolf committed
38
39
logger = logging.getLogger(__name__)

40
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
thomwolf's avatar
thomwolf committed
41
PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
42

43

44
45
46
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
47
48
    import re
    import numpy as np
49
50
51
52
53
54
55
56
    print("Loading weights...")
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
57
    # This was used when we had a single embedding matrix for positions and tokens
58
59
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
60
61
62
    init_params = [arr.squeeze() for arr in init_params]

    try:
63
64
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
65
    except AssertionError as e:
66
67
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
68
69
        raise

70
71
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
72
    names.pop(0)
73
74
    # Pop position and token embedding arrays
    init_params.pop(0)
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
113
114
115
116
117
118
119
120
121

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


122
123
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
124

thomwolf's avatar
thomwolf committed
125
126
127
class OpenAIGPTConfig(object):
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
128
129
130
131
132

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
thomwolf's avatar
thomwolf committed
133
        n_positions=512,
134
135
136
137
138
139
140
141
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
142
        layer_norm_epsilon=1e-5,
143
        initializer_range=0.02,
144
        predict_special_tokens=True
145
    ):
thomwolf's avatar
thomwolf committed
146
147
148
149
150
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
151
152
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
thomwolf's avatar
thomwolf committed
153
154
155
156
157
158
159
160
161
162
163
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
164
            layer_norm_epsilon: epsilon to use in the layer norm layers
thomwolf's avatar
thomwolf committed
165
166
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
167
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
168
        """
thomwolf's avatar
thomwolf committed
169
170
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
171
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
172
173
174
175
176
177
178
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
179
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
180
181
182
183
184
185
186
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
187
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
188
            self.initializer_range = initializer_range
189
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
190
        else:
191
192
193
194
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
195
196

    @property
197
198
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
199
200
201
202
203
204
205
206
207
208
209
210

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `OpenAIGPTConfig` from a json file of parameters."""
211
        with open(json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

227
228
229
230
231
    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())

232

thomwolf's avatar
thomwolf committed
233
234
235
236
237
238
239
240
class Conv1D(nn.Module):
    def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            w = torch.empty(nx, nf)
            nn.init.normal_(w, std=0.02)
thomwolf's avatar
thomwolf committed
241
242
            self.weight = Parameter(w)
            self.bias = Parameter(torch.zeros(nf))
thomwolf's avatar
thomwolf committed
243
244
245
246
247
248
        else:  # was used to train LM
            raise NotImplementedError

    def forward(self, x):
        if self.rf == 1:
            size_out = x.size()[:-1] + (self.nf,)
thomwolf's avatar
thomwolf committed
249
            x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
thomwolf's avatar
thomwolf committed
250
251
252
253
254
255
256
            x = x.view(*size_out)
        else:
            raise NotImplementedError
        return x


class Attention(nn.Module):
257
    def __init__(self, nx, n_ctx, config, scale=False, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
258
259
260
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
261
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
262
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
263
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
264
265
        self.split_size = n_state
        self.scale = scale
266

thomwolf's avatar
thomwolf committed
267
        self.output_attentions = output_attentions
268
269
270
        self.keep_multihead_output = keep_multihead_output
        self.multihead_output = None

thomwolf's avatar
thomwolf committed
271
272
        self.c_attn = Conv1D(n_state * 3, 1, nx)
        self.c_proj = Conv1D(n_state, 1, nx)
273
274
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
275

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    def prune_heads(self, heads):
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
291
292
293
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
294
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
295
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
296
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
297
298
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
299
300
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
301
302
303
304
305

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
306
307
        if self.output_attentions:
            return w, torch.matmul(w, v)
thomwolf's avatar
thomwolf committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

323
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
324
325
326
327
328
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
329
330
331
332
333
334

        a = self._attn(query, key, value, head_mask)
        if self.keep_multihead_output:
            self.multihead_output = a
            self.multihead_output.retain_grad()

thomwolf's avatar
thomwolf committed
335
336
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
337
338
339
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
340
341
        if self.output_attentions:
            return attentions, a
thomwolf's avatar
thomwolf committed
342
343
344
345
        return a


class MLP(nn.Module):
346
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
347
        super(MLP, self).__init__()
348
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
349
350
        self.c_fc = Conv1D(n_state, 1, nx)
        self.c_proj = Conv1D(nx, 1, n_state)
351
352
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
353
354
355
356
357
358
359
360

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
361
    def __init__(self, n_ctx, config, scale=False, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
362
        super(Block, self).__init__()
363
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
364
        self.output_attentions = output_attentions
365
        self.attn = Attention(nx, n_ctx, config, scale, output_attentions, keep_multihead_output)
366
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
367
        self.mlp = MLP(4 * nx, config)
368
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
369

370
371
    def forward(self, x, head_mask=None):
        a = self.attn(x, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
372
373
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
374
375
376
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
377
378
        if self.output_attentions:
            return attentions, h
thomwolf's avatar
thomwolf committed
379
380
381
        return h


thomwolf's avatar
thomwolf committed
382
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
383
384
    """ Language Model Head for the transformer """

385
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
386
        super(OpenAIGPTLMHead, self).__init__()
387
        self.n_embd = config.n_embd
388
389
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
thomwolf's avatar
thomwolf committed
390
391
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
392
393
        self.set_embeddings_weights(model_embeddings_weights)

394
395
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
396
        embed_shape = model_embeddings_weights.shape
397
        self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
398

thomwolf's avatar
thomwolf committed
399
400
    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
401
402
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
403
404
405
        return lm_logits


thomwolf's avatar
thomwolf committed
406
class OpenAIGPTMultipleChoiceHead(nn.Module):
thomwolf's avatar
thomwolf committed
407
408
    """ Classifier Head for the transformer """

409
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
410
        super(OpenAIGPTMultipleChoiceHead, self).__init__()
411
412
413
        self.n_embd = config.n_embd
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)
thomwolf's avatar
thomwolf committed
414

415
        nn.init.normal_(self.linear.weight, std=0.02)
thomwolf's avatar
thomwolf committed
416
417
        nn.init.normal_(self.linear.bias, 0)

thomwolf's avatar
thomwolf committed
418
    def forward(self, hidden_states, mc_token_ids):
thomwolf's avatar
thomwolf committed
419
        # Classification logits
thomwolf's avatar
thomwolf committed
420
        # hidden_state (bsz, num_choices, seq_length, hidden_size)
thomwolf's avatar
thomwolf committed
421
        # mc_token_ids (bsz, num_choices)
thomwolf's avatar
thomwolf committed
422
        mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
thomwolf's avatar
thomwolf committed
423
424
425
        # (bsz, num_choices, 1, hidden_size)
        multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
        # (bsz, num_choices, hidden_size)
Philipp Glock's avatar
Philipp Glock committed
426
        multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
thomwolf's avatar
thomwolf committed
427
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
thomwolf's avatar
thomwolf committed
428
        # (bsz, num_choices)
thomwolf's avatar
thomwolf committed
429
430
431
432
433
434
435
        return multiple_choice_logits


class OpenAIGPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
436

thomwolf's avatar
thomwolf committed
437
438
439
440
441
442
443
444
    def __init__(self, config, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__()
        if not isinstance(config, OpenAIGPTConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
445
446
                )
            )
thomwolf's avatar
thomwolf committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
461

thomwolf's avatar
thomwolf committed
462
    @classmethod
463
    def from_pretrained(cls, pretrained_model_name_or_path, num_special_tokens=None, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
464
465
466
467
468
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
thomwolf's avatar
thomwolf committed
469
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
470
471
472
473
474
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `openai-gpt`
                - a path or url to a pretrained model archive containing:
                    . `openai_gpt_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
475
                - a path or url to a pretrained model archive containing:
476
                    . `openai-gpt-config.json` a configuration file for the model
477
478
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
479
480
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
481
            *inputs, **kwargs: additional input for the specific OpenAI-GPT class
thomwolf's avatar
thomwolf committed
482
        """
483
484
485
486
487
488
489
        state_dict = kwargs.get('state_dict', None)
        kwargs.pop('state_dict', None)
        cache_dir = kwargs.get('cache_dir', None)
        kwargs.pop('cache_dir', None)
        from_tf = kwargs.get('from_tf', False)
        kwargs.pop('from_tf', None)

thomwolf's avatar
thomwolf committed
490
491
        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
492
            config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
493
        else:
thomwolf's avatar
thomwolf committed
494
            archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
495
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
thomwolf's avatar
thomwolf committed
496
497
498
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
499
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
500
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
501
502
503
504
505
506
507
508
509
510
511
512
            if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained weights.".format(
                        archive_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find files {} and {} "
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
                        archive_file, config_file
                    )
513
                )
thomwolf's avatar
thomwolf committed
514
            return None
515
516
517
        if resolved_archive_file == archive_file and resolved_config_file == config_file:
            logger.info("loading weights file {}".format(archive_file))
            logger.info("loading configuration file {}".format(config_file))
thomwolf's avatar
thomwolf committed
518
        else:
519
520
521
522
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))
thomwolf's avatar
thomwolf committed
523
        # Load config
524
        config = OpenAIGPTConfig.from_json_file(resolved_config_file)
thomwolf's avatar
thomwolf committed
525
526
527
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
528
        if state_dict is None and not from_tf:
thomwolf's avatar
thomwolf committed
529
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
530
531
        if from_tf:
            # Directly load from a TensorFlow checkpoint (stored as NumPy array)
532
            return load_tf_weights_in_openai_gpt(model, resolved_archive_file)
thomwolf's avatar
thomwolf committed
533
534
535
536
537

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
thomwolf's avatar
thomwolf committed
538
539
540
541
542
543
            if key.endswith(".g"):
                new_key = key[:-2] + ".weight"
            elif key.endswith(".b"):
                new_key = key[:-2] + ".bias"
            elif key.endswith(".w"):
                new_key = key[:-2] + ".weight"
thomwolf's avatar
thomwolf committed
544
545
546
547
548
549
550
551
552
553
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
554
        metadata = getattr(state_dict, "_metadata", None)
thomwolf's avatar
thomwolf committed
555
556
557
558
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

559
        def load(module, prefix=""):
thomwolf's avatar
thomwolf committed
560
561
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
562
563
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
            )
thomwolf's avatar
thomwolf committed
564
565
            for name, child in module._modules.items():
                if child is not None:
566
567
                    load(child, prefix + name + ".")

thomwolf's avatar
thomwolf committed
568
569
        start_model = model
        if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
thomwolf's avatar
update  
thomwolf committed
570
571
572
            start_model = model.transformer
        load(start_model, prefix="")

thomwolf's avatar
thomwolf committed
573
        if len(missing_keys) > 0:
574
575
576
            logger.info(
                "Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
            )
thomwolf's avatar
thomwolf committed
577
        if len(unexpected_keys) > 0:
578
579
580
            logger.info(
                "Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
            )
thomwolf's avatar
thomwolf committed
581
        if len(error_msgs) > 0:
582
583
584
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
            )
585

thomwolf's avatar
thomwolf committed
586
        # Add additional embeddings for special tokens if needed
587
588
        # This step also make sure we are still sharing the output and input embeddings after loading weights
        model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
thomwolf's avatar
thomwolf committed
589
        return model
thomwolf's avatar
thomwolf committed
590
591


thomwolf's avatar
thomwolf committed
592
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
593
594
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

595
596
597
598
599
600
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
601
602
603
604
605
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
606
         config.vocab_size + config.n_special - 1]                  ______________________
607

608
609
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
610
611
612
    You should use the associate indices to index the embeddings.

    Params:
613
614
615
616
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
617
618
619

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
620
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
621
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
622
            with the position indices (selected in the range [0, config.n_positions - 1[.
623
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
624
625
626
627
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
628
629
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
630
631

    Outputs:
632
633
        `hidden_states`: a list of all the encoded-hidden-states in the model (length of the list: number of layers + 1 for the output of the embeddings)
            as torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
634
635
636
637
638
639
640
641
642
643
644
645
646
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
647

648
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
649
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
650
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
651
        self.tokens_embed = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
652
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
653
        self.drop = nn.Dropout(config.embd_pdrop)
654
655
        block = Block(config.n_ctx, config, scale=True, output_attentions=output_attentions,
                                                        keep_multihead_output=keep_multihead_output)
656
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
657

thomwolf's avatar
thomwolf committed
658
659
660
        self.apply(self.init_weights)

    def set_num_special_tokens(self, num_special_tokens):
661
662
663
        " Update input embeddings with new embedding matrice if needed "
        if self.config.n_special == num_special_tokens:
            return
thomwolf's avatar
thomwolf committed
664
665
        # Update config
        self.config.n_special = num_special_tokens
thomwolf's avatar
thomwolf committed
666
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
667
        old_embed = self.tokens_embed
668
        self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
thomwolf's avatar
thomwolf committed
669
        self.tokens_embed.to(old_embed.weight.device)
670
        self.init_weights(self.tokens_embed)
thomwolf's avatar
thomwolf committed
671
672
        # Copy word embeddings from the previous weights
        self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
thomwolf's avatar
thomwolf committed
673

674
675
676
677
678
679
680
681
682
683
684
685
686
687
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def get_multihead_outputs(self):
        """ Gather all multi-head outputs.
            Return: list (layers) of multihead module outputs with gradients
        """
        return [h.attn.multihead_output for h in self.h]

    def forward(self, input_ids, position_ids=None, token_type_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
688
        if position_ids is None:
689
690
691
692
693
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
694
695
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

696
697
698
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we mask the head
        # attention_probs has shape bsz x n_heads x N x N
699
        # head_mask has shape n_layer x batch x n_heads x N x N
700
701
        if head_mask is not None:
            if head_mask.dim() == 1:
702
703
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand_as(self.config.n_layer, -1, -1, -1, -1)
704
            elif head_mask.dim() == 2:
705
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
706
707
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
            head_mask = (1.0 - head_mask)
708
709
        else:
            head_mask = [None] * self.config.n_layer
710

thomwolf's avatar
thomwolf committed
711
712
713
714
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

715
716
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
717
718
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
719
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
720
721
722
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
723
724
        hidden_states = self.drop(hidden_states)

725
726
        output_shape = input_shape + (hidden_states.size(-1),)

thomwolf's avatar
thomwolf committed
727
        all_attentions = []
728
        all_hidden_states = [hidden_states.view(*output_shape)]
729
730
        for i, block in enumerate(self.h):
            outputs = block(hidden_states, head_mask[i])
thomwolf's avatar
thomwolf committed
731
            if self.output_attentions:
732
                attentions, hidden_states = outputs
thomwolf's avatar
thomwolf committed
733
734
                all_attentions.append(attentions)
            else:
735
                hidden_states = outputs
736
737
            all_hidden_states.append(hidden_states.view(*output_shape))

thomwolf's avatar
thomwolf committed
738
        if self.output_attentions:
739
740
            return all_attentions, all_hidden_states
        return all_hidden_states
thomwolf's avatar
thomwolf committed
741

742

thomwolf's avatar
thomwolf committed
743
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
744
745
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

746
747
748
749
750
751
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
752
753
754
755
756
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
757
         config.vocab_size + config.n_special - 1]                  ______________________
758

759
760
761
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
762
763

    Params:
764
765
766
767
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
768
769
770

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
771
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
772
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
773
            with the position indices (selected in the range [0, config.n_positions - 1[.
774
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
775
776
777
778
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
779
780
781
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
782
783
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
784
785
786
787
788

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
789
790
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
                (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
791
792
793
794
795
796
797
798
799
800
801
802

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
803

804
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
805
        super(OpenAIGPTLMHeadModel, self).__init__(config)
806
807
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions,
                                             keep_multihead_output=keep_multihead_output)
808
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
809
810
        self.apply(self.init_weights)

811
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
812
813
814
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
815
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
816
        self.transformer.set_num_special_tokens(num_special_tokens)
817
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
818

819
820
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, head_mask=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
thomwolf's avatar
thomwolf committed
821
822
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
823
824
        hidden_states = hidden_states[-1]

thomwolf's avatar
thomwolf committed
825
826
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
827
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
828
829
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
830
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
831
            loss_fct = CrossEntropyLoss(ignore_index=-1)
832
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
833
                            shift_labels.view(-1))
thomwolf's avatar
thomwolf committed
834
            return loss
thomwolf's avatar
thomwolf committed
835
836
        if self.transformer.output_attentions:
            return all_attentions, lm_logits
thomwolf's avatar
thomwolf committed
837
        return lm_logits
thomwolf's avatar
thomwolf committed
838

839

thomwolf's avatar
thomwolf committed
840
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
841
    """OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
842

843
844
845
846
847
848
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
849
850
851
852
853
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
854
         config.vocab_size + config.n_special - 1]                  ______________________
855

856
857
858
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
859
860

    Params:
861
862
863
864
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
865
866

    Inputs:
thomwolf's avatar
thomwolf committed
867
868
869
870
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, total_tokens_embeddings[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
871
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
872
            with the position indices (selected in the range [0, config.n_positions - 1[.
873
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
874
875
876
877
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
878
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
879
880
            with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_tokens_embeddings]
881
882
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].
883
884
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
885
886
887
888
889

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
890
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
891
892
893
894
895
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
thomwolf's avatar
thomwolf committed
896
897
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
898
899
900

    config = modeling_openai.OpenAIGPTConfig()

VictorSanh's avatar
VictorSanh committed
901
    model = modeling_openai.OpenAIGPTDoubleHeadsModel(config)
thomwolf's avatar
thomwolf committed
902
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
903
904
    ```
    """
905

906
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
907
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
908
909
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions,
                                             keep_multihead_output=keep_multihead_output)
910
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
911
        self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
912
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
913

914
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
915
916
917
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
918
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
919
        self.transformer.set_num_special_tokens(num_special_tokens)
920
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
921

922
923
924
    def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None,
                position_ids=None, head_mask=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
thomwolf's avatar
thomwolf committed
925
926
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
927
928
        hidden_states = hidden_states[-1]

thomwolf's avatar
thomwolf committed
929
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
930
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
thomwolf's avatar
thomwolf committed
931
932
        losses = []
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
933
934
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
935
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
936
            losses.append(loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)))
937
        if mc_labels is not None:
thomwolf's avatar
thomwolf committed
938
            loss_fct = CrossEntropyLoss()
939
            losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
thomwolf's avatar
thomwolf committed
940
941
        if losses:
            return losses
thomwolf's avatar
thomwolf committed
942
943
        if self.transformer.output_attentions:
            return all_attentions, lm_logits, mc_logits
944
        return lm_logits, mc_logits