test_deepspeed.py 51.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import dataclasses
16
import io
17
import itertools
18
import json
19
20
import os
import unittest
21
from copy import deepcopy
22
from functools import partial
23

24
import datasets
25
from parameterized import parameterized
26

27
import tests.trainer.test_trainer
Stas Bekman's avatar
Stas Bekman committed
28
from tests.trainer.test_trainer import TrainerIntegrationCommon  # noqa
29
from transformers import AutoModel, TrainingArguments, is_torch_available, logging
30
31
32
33
34
from transformers.integrations.deepspeed import (
    HfDeepSpeedConfig,
    is_deepspeed_available,
    unset_hf_deepspeed_config,
)
35
from transformers.testing_utils import (
36
    CaptureLogger,
37
    CaptureStd,
38
    CaptureStderr,
39
    LoggingLevel,
40
    TestCasePlus,
41
    backend_device_count,
42
    execute_subprocess_async,
43
    mockenv_context,
44
    require_deepspeed,
45
    require_optuna,
46
47
    require_torch_accelerator,
    require_torch_multi_accelerator,
48
    slow,
49
    torch_device,
50
)
51
from transformers.trainer_utils import get_last_checkpoint, set_seed
52
from transformers.utils import SAFE_WEIGHTS_NAME, is_torch_bf16_available_on_device
53

54

55
if is_torch_available():
Stas Bekman's avatar
Stas Bekman committed
56
57
58
59
    from tests.trainer.test_trainer import (  # noqa
        RegressionModelConfig,
        RegressionPreTrainedModel,
    )
60

61
62
63
    # hack to restore original logging level pre #21700
    get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info")

64

65
set_seed(42)
66

67
68
69
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"

70
T5_SMALL = "t5-small"
71
T5_TINY = "patrickvonplaten/t5-tiny-random"
72
GPT2_TINY = "sshleifer/tiny-gpt2"
73
74


75
76
77
78
79
def load_json(path):
    with open(path) as f:
        return json.load(f)


Stas Bekman's avatar
Stas Bekman committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def get_master_port(real_launcher=False):
    """
    When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
    the issue is that once the port is tied it can't be used anywhere else outside of this process,
    since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
    able to run both emulated launcher and normal launcher tests we need 2 distinct ports.

    This function will give the right port in the right context. For real launcher it'll give the
    base port, for emulated launcher it'll give the base port + 1. In both cases a string is
    returned.

    Args:
        `real_launcher`: whether a real launcher is going to be used, or the emulated one

    """

    master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    if not real_launcher:
        master_port_base = str(int(master_port_base) + 1)
    return master_port_base


102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
def require_deepspeed_aio(test_case):
    """
    Decorator marking a test that requires deepspeed aio (nvme)
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)

    import deepspeed
    from deepspeed.ops.aio import AsyncIOBuilder

    if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]:
        return unittest.skip("test requires deepspeed async-io")(test_case)
    else:
        return test_case


118
119
if is_deepspeed_available():
    from deepspeed.utils import logger as deepspeed_logger  # noqa
120
    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
121
    from transformers.integrations.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled  # noqa
122

123
124
125
126
127
128

def get_launcher(distributed=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
129
    num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1
Stas Bekman's avatar
Stas Bekman committed
130
    master_port = get_master_port(real_launcher=True)
131
    return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
132
133


134
135
ZERO2 = "zero2"
ZERO3 = "zero3"
136
137
138
139

FP16 = "fp16"
BF16 = "bf16"

140
141
142
143
144
145
146
147
HF_OPTIM = "hf_optim"
HF_SCHEDULER = "hf_scheduler"
DS_OPTIM = "ds_optim"
DS_SCHEDULER = "ds_scheduler"

optims = [HF_OPTIM, DS_OPTIM]
schedulers = [HF_SCHEDULER, DS_SCHEDULER]

148
stages = [ZERO2, ZERO3]
149
if is_torch_bf16_available_on_device(torch_device):
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    dtypes = [FP16, BF16]
else:
    dtypes = [FP16]


def parameterized_custom_name_func(func, param_num, param):
    # customize the test name generator function as we want both params to appear in the sub-test
    # name, as by default it shows only the first param
    param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
    return f"{func.__name__}_{param_based_name}"


# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, dtypes))
164

165
166
params_with_optims_and_schedulers = list(itertools.product(stages, dtypes, optims, schedulers))

167

168
@require_deepspeed
169
@require_torch_accelerator
170
171
172
173
174
175
176
177
class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """
    Testing non-Trainer DeepSpeed integration
    """

    def setUp(self):
        super().setUp()

Stas Bekman's avatar
Stas Bekman committed
178
        master_port = get_master_port(real_launcher=False)
179
180
181
182
183
184
185
        self.dist_env_1_gpu = {
            "MASTER_ADDR": "localhost",
            "MASTER_PORT": master_port,
            "RANK": "0",
            "LOCAL_RANK": "0",
            "WORLD_SIZE": "1",
        }
186

187
188
189
190
191
192
    def tearDown(self):
        super().tearDown()

        # reset the ds config global so that tests state doesn't leak
        unset_hf_deepspeed_config()

193
194
    def test_init_zero3_fp16(self):
        # test that zero.Init() works correctly under zero3/fp16
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        # now remove zero optimization
        del ds_config["zero_optimization"]
        dschf = HfDeepSpeedConfig(ds_config)

        self.assertFalse(dschf.is_zero3())
        self.assertFalse(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    def test_init_zero3_missing_params(self):
        # test that zero.Init() for missing parameters works correctly under zero3
        import deepspeed
        import torch

        from transformers.models.gpt2.modeling_gpt2 import GPT2PreTrainedModel

        class TinyGPT2WithUninitializedWeights(GPT2PreTrainedModel):
            def __init__(self, config):
                super().__init__(config)
                self.transformer = AutoModel.from_pretrained(GPT2_TINY, config=config)
                self.new_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=True)

            def forward(self, *args, **kwargs):
                transformer_outputs = self.transformer(*args, **kwargs)
                hidden_states = transformer_outputs[0]
                return self.new_head(hidden_states).float()

            def _init_weights(self, module):
                super()._init_weights(module)
                if module is self.new_head:
                    self.new_head.weight.data.fill_(-100.0)
                    self.new_head.bias.data.fill_(+100.0)

        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    model = TinyGPT2WithUninitializedWeights.from_pretrained(GPT2_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)
        self.assertRegex(cl.out, r"newly initialized.*new_head\.bias.*new_head\.weight")
        with deepspeed.zero.GatheredParameters([model.new_head.weight, model.new_head.bias]):
            self.assertTrue(
                torch.allclose(model.new_head.weight, torch.tensor(-100.0, device=model.new_head.weight.device)),
            )
            self.assertTrue(
                torch.allclose(model.new_head.bias, torch.tensor(+100.0, device=model.new_head.bias.device)),
            )

        # now remove zero optimization
        del ds_config["zero_optimization"]
        dschf = HfDeepSpeedConfig(ds_config)

        self.assertFalse(dschf.is_zero3())
        self.assertFalse(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    model = TinyGPT2WithUninitializedWeights.from_pretrained(GPT2_TINY)
        self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)
        self.assertRegex(cl.out, r"newly initialized.*new_head\.bias.*new_head\.weight")
        self.assertTrue(
            torch.allclose(model.new_head.weight, torch.tensor(-100.0, device=model.new_head.weight.device)),
        )
        self.assertTrue(
            torch.allclose(model.new_head.bias, torch.tensor(+100.0, device=model.new_head.bias.device)),
        )

300

301
class TrainerIntegrationDeepSpeedWithCustomConfig(TestCasePlus):
302
303
    def setUp(self):
        super().setUp()
304
305
306
307
308

        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

Stas Bekman's avatar
Stas Bekman committed
309
        master_port = get_master_port(real_launcher=False)
310
311
312
313
314
315
316
        self.dist_env_1_gpu = {
            "MASTER_ADDR": "localhost",
            "MASTER_PORT": master_port,
            "RANK": "0",
            "LOCAL_RANK": "0",
            "WORLD_SIZE": "1",
        }
317

318
319
320
321
        self.ds_config_file = {
            "zero2": f"{self.test_file_dir_str}/ds_config_zero2.json",
            "zero3": f"{self.test_file_dir_str}/ds_config_zero3.json",
        }
322
323
324

        # use self.get_config_dict(stage) to use these to ensure the original is not modified
        with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
325
            config_zero2 = json.load(f)
326
        with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
327
            config_zero3 = json.load(f)
328
            # The following setting slows things down, so don't enable it by default unless needed by a test.
329
            # It's in the file as a demo for users since we want everything to work out of the box even if slower.
330
331
            config_zero3["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = False

332
333
334
335
        self.ds_config_dict = {
            "zero2": config_zero2,
            "zero3": config_zero3,
        }
336

337
338
339
340
341
342
    def tearDown(self):
        super().tearDown()

        # reset the ds config global so that tests state doesn't leak
        unset_hf_deepspeed_config()

343
344
345
    def get_config_dict(self, stage):
        # As some tests modify the dict, always make a copy
        return deepcopy(self.ds_config_dict[stage])
346

347
348

@require_deepspeed
349
@require_torch_accelerator
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
class TrainerIntegrationDeepSpeed(TrainerIntegrationDeepSpeedWithCustomConfig, TrainerIntegrationCommon):
    """

    This class is for testing directly via get_regression_trainer

    It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
    which we can re-use here.

    Important: this class' setup can only work with a single gpu because it runs within the current
    pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.

    Note: if any of the tests of this class get run there will be at least one gpu occupied by them
    until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
    won't be released until this pytest worker exits.

    This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
    processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
    is not a bug.
    """

370
    # --- These tests are enough to run on one of zero stages --- #
371

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    def test_hf_ds_config_mismatch(self):
        ds_config = self.get_config_dict(ZERO2)

        # Purposefully configure these values to mismatch TrainingArguments values.
        # This currently doesn't cover all keys (but it could)
        per_device_train_batch_size = 2
        ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2

        ds_config["train_batch_size"] = 1000

        gradient_accumulation_steps = 2
        ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2

        max_grad_norm = 1.0
        ds_config["gradient_clipping"] = max_grad_norm + 0.1

        adam_beta1, adam_beta2 = 0.9, 0.99
        ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1]

        fp16 = True
        ds_config["fp16"]["enabled"] = not fp16

        keys = [
            "per_device_train_batch_size",
            "train_batch_size",
            "gradient_accumulation_steps",
            "max_grad_norm",
            "betas",
            "fp16",
        ]

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                local_rank=0,
                fp16=fp16,
                deepspeed=ds_config,
                per_device_train_batch_size=per_device_train_batch_size,
                gradient_accumulation_steps=gradient_accumulation_steps,
                max_grad_norm=max_grad_norm,
                adam_beta1=adam_beta1,
                adam_beta2=adam_beta2,
            )
            with self.assertRaises(Exception) as context:
                trainer.train()

        for key in keys:
            self.assertTrue(
                key in str(context.exception),
                f"{key} is not in the exception message:\n{context.exception}",
            )

423
424
425
426
427
428
429
430
431
    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
432
433
434
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
435
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
436
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
437
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
438
439
440
441
442
443
444
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
445
446
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
447
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
448
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
449
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
450
451
452
453
454
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
455
        a = 0
456
        with mockenv_context(**self.dist_env_1_gpu):
457
458
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
459
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
460
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
461
462
463
464
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)
465

466
    @require_deepspeed_aio
467
468
469
470
471
    def test_stage3_nvme_offload(self):
        with mockenv_context(**self.dist_env_1_gpu):
            # this actually doesn't have to be on NVMe, any storage will do since this test only
            # runs a simple check that we can use some directory as if it were NVMe
            nvme_path = self.get_auto_remove_tmp_dir()
472
            nvme_config = {"device": "nvme", "nvme_path": nvme_path}
473
474
475
            ds_config_zero3_dict = self.get_config_dict(ZERO3)
            ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config
            ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config
476
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict)
477
            with CaptureLogger(deepspeed_logger) as cl:
478
                trainer.train()
479
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
480

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    @require_optuna
    def test_hyperparameter_search(self):
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_zero3_dict = self.get_config_dict(ZERO3)

            # hyperparameter_search requires model_init() to recreate the model for each trial
            def model_init():
                config = RegressionModelConfig(a=0, b=0, double_output=False)
                model = RegressionPreTrainedModel(config)
                return model

            trainer = get_regression_trainer(
                local_rank=0,
                fp16=True,
                model_init=model_init,
                deepspeed=ds_config_zero3_dict,
            )

            n_trials = 3
            with CaptureLogger(deepspeed_logger) as cl:
                with CaptureStd() as cs:
                    trainer.hyperparameter_search(direction="maximize", n_trials=n_trials)
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
            self.assertIn(f"Trial {n_trials-1} finished with value", cs.err, "expected hyperparameter_search output")
            self.assertIn("Best is trial", cs.err, "expected hyperparameter_search output")

507
508
    # --- These tests need to run on both zero stages --- #

509
510
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_hf_optimizer_with_offload(self, stage, dtype):
511
        # non-DS optimizers can be used with ZERO-offload (as long as they have both CPU and GPU implementation (except LAMB))
512
513
514
        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
        # force cpu offload
515
        ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
516
        ds_config_dict["zero_force_ds_cpu_optimizer"] = False  # offload is not efficient w/o CPUAdam
517
        with mockenv_context(**self.dist_env_1_gpu):
518
            kwargs = {"local_rank": 0, "deepspeed": ds_config_dict}
519
520
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
521
            with CaptureLogger(deepspeed_logger) as cl:
522
                trainer.train()
523
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
524

525
526
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fake_notebook_no_launcher(self, stage, dtype):
527
528
529
530
531
        # this setup emulates a notebook where a launcher needs to be emulated by hand

        # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
        # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
        # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
532
533
        # to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger.
        with mockenv_context(**self.dist_env_1_gpu):
534
            kwargs = {"local_rank": 0, "deepspeed": self.get_config_dict(stage)}
535
536
537
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

538
            with CaptureLogger(deepspeed_logger) as cl:
539
                trainer.train()
540
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
541

542
543
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_early_get_last_lr(self, stage, dtype):
544
545
546
547
548
549
550
551
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
552
553
554
555
556
557
558
559
560
            kwargs = {
                "a": a,
                "b": b,
                "local_rank": 0,
                "train_len": 8,
                "deepspeed": self.get_config_dict(stage),
                "per_device_train_batch_size": 8,
                "logging_steps": 1,
            }
561
562
563
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

564
            trainer.train()
565
566
            post_train_a = trainer.model.a.item()

567
568
            # XXX: for some reason the following check fails with zero3/fp16 and any/bf16 - not a
            # broken but a different qualitative outcome - as if optimizer did run
569
570
571
572
            # oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere
            # print(trainer.model.a.item())
            # print(trainer.model.b.item())
            # need to investigate at some point
573
            if (stage == ZERO3 and dtype == FP16) or (dtype == BF16):
574
                return
575
576
577

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
578
            self.assertEqual(post_train_a, a)
579

580
581
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_gradient_accumulation(self, stage, dtype):
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

597
598
599
600
601
602
603
        kwargs = {
            "a": a,
            "b": b,
            "local_rank": 0,
            "train_len": train_len,
            "deepspeed": self.get_config_dict(stage),
        }
604
        kwargs[dtype] = True
605

606
607
        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
608
609
                **kwargs,
                per_device_train_batch_size=16,
610
611
612
613
614
615
616
617
618
619
620
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
621
                **kwargs,
622
                per_device_train_batch_size=4,
623
                gradient_accumulation_steps=4,
624
625
626
627
628
629
630
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

631
632
633
634
        # training with half the batch size but accumulation steps as 2 should give the same
        # weights, but sometimes get a slight difference still of 1e-6
        self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5)
        self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5)
635

636
637
        # Relative difference. See the note above how to get identical loss on a small bs
        self.assertTrue((no_grad_accum_loss - yes_grad_accum_loss) / (no_grad_accum_loss + 1e-15) <= 1e-3)
638

639
    def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage, dtype):
640
        # adapted from TrainerIntegrationCommon.check_saved_checkpoints
641
        file_list = [SAFE_WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]
642
643
644
645
646
647
648
649

        if stage == ZERO2:
            ds_file_list = ["mp_rank_00_model_states.pt"]
        elif stage == ZERO3:
            ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
        else:
            raise ValueError(f"unknown stage {stage}")

650
651
        if dtype == "bf16":
            ds_file_list.append("bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt")
652
653
654

        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
655
            self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
656
657
            # common files
            for filename in file_list:
658
659
                path = os.path.join(checkpoint, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
660
661
662
663
664
665

            # ds files
            ds_path = os.path.join(checkpoint, f"global_step{step}")
            for filename in ds_file_list:
                # filename = os.path.join(path, filename)
                # print(filename)
666
667
                path = os.path.join(ds_path, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
668

669
670
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_save_checkpoints(self, stage, dtype):
671
672
        # adapted from  TrainerIntegrationTest.test_save_checkpoints

673
        freq = 5
674
        output_dir = self.get_auto_remove_tmp_dir()
675
        ds_config_dict = self.get_config_dict(stage)
676
677
678
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
679
        if stage == ZERO3:
680
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
681
682
683

        # save checkpoints
        with mockenv_context(**self.dist_env_1_gpu):
684
685
686
687
688
            kwargs = {
                "output_dir": output_dir,
                "save_steps": freq,
                "deepspeed": ds_config_dict,
            }
689
690
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
691
692
693
            trainer.train()

        total = int(self.n_epochs * 64 / self.batch_size)
694
        self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage, dtype)
695

696
697
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_can_resume_training_errors(self, stage, dtype):
698
699
700
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = self.get_config_dict(stage)
            output_dir = self.get_auto_remove_tmp_dir()
701
            kwargs = {"output_dir": output_dir, "deepspeed": ds_config_dict}
702
703
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
704
705
706
707
708
709
710
711

            # 1. fail to find any checkpoint - due a fresh output_dir
            with self.assertRaises(Exception) as context:
                trainer.train(resume_from_checkpoint=True)
            self.assertTrue(
                "No valid checkpoint found in output directory" in str(context.exception),
                f"got exception: {context.exception}",
            )
712

713
714
715
716
717
718
719
720
            # 2. fail to find a bogus checkpoint
            with self.assertRaises(Exception) as context:
                checkpoint = os.path.join(output_dir, "checkpoint-5")
                trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
            self.assertTrue(
                "Can't find a valid checkpoint at" in str(context.exception), f"got exception: {context.exception}"
            )

721
722
    @parameterized.expand(params_with_optims_and_schedulers, name_func=parameterized_custom_name_func)
    def test_can_resume_training_normal(self, stage, dtype, optim, scheduler):
723
724
        # adapted from TrainerIntegrationTest.test_can_resume_training
        # test normal resume for each stage separately, error-handling is tested in a different test
725
726
727
728
729
730

        # ToDo: Currently, hf_optim + hf_scheduler resumes with the correct states and
        # also has same losses for few steps but then slowly diverges. Need to figure it out.
        if optim == HF_OPTIM and scheduler == HF_SCHEDULER:
            return

731
        output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
732
        ds_config_dict = self.get_config_dict(stage)
733
734
735
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
736
        if stage == ZERO3:
737
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
738

739
740
741
742
743
744
        if optim == HF_OPTIM:
            del ds_config_dict["optimizer"]

        if scheduler == HF_SCHEDULER:
            del ds_config_dict["scheduler"]

745
746
747
748
749
750
751
        kwargs = {
            "output_dir": output_dir,
            "train_len": 128,
            "save_steps": 5,
            "learning_rate": 0.1,
            "deepspeed": ds_config_dict,
        }
752
        kwargs[dtype] = True
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(output_dir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(output_dir, "checkpoint-15")

            # Reinitialize trainer and load model
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

785
786
787
788
789
            # Finally, should be able to resume with the same trainer/same deepspeed engine instance
            # XXX: but currently this not possible due DS bug: https://github.com/microsoft/DeepSpeed/issues/1612
            # trainer.train(resume_from_checkpoint=checkpoint)
            # a workaround needs to be used that re-creates the deepspeed engine

790
791
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_state_dict_from_zero_checkpoint(self, stage, dtype):
792
793
794
795
796
797
        # test that we can load fp32 weights directly from the zero checkpoint into the current model

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)

798
799
800
801
802
803
804
805
806
807
        kwargs = {
            "output_dir": output_dir,
            "train_len": 4,
            "per_device_train_batch_size": 4,
            "num_train_epochs": 1,
            "save_strategy": "steps",
            "save_steps": 1,
            "learning_rate": 0.1,
            "deepspeed": ds_config_dict,
        }
808
        kwargs[dtype] = True
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint_dir = get_last_checkpoint(output_dir)
            model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)

            (a1, b1) = model.a.item(), model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

825
826
827
828
    def test_config_object(self):
        # test that we can switch from zero2 to zero3 in the same process for example
        # test is_zero, etc.
        output_dir = self.get_auto_remove_tmp_dir()
829
        kwargs = {"output_dir": output_dir, "train_len": 8, "fp16": True}
830

831
832
        ds_config_zero3_dict = self.get_config_dict(ZERO3)
        ds_config_zero2_dict = self.get_config_dict(ZERO2)
833

834
        with mockenv_context(**self.dist_env_1_gpu):
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test we can repeat that and with train this time
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            trainer.train()
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test zero3 is disabled
            trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs)
            self.assertFalse(is_deepspeed_zero3_enabled())

            # check config obj
            config = deepspeed_config()
            self.assertTrue(bool(config), "Deepspeed config should be accessible")

851
852
            # with accelerate integration below line is additionally required for this test to pass
            trainer.accelerator.state._reset_state()
853
854
855
856
857
858
            del trainer
            # now weakref should gc the global and we shouldn't get anything here
            config = deepspeed_config()
            self.assertFalse(is_deepspeed_zero3_enabled())
            self.assertFalse(bool(config), "Deepspeed config should not be accessible")

859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_best_model(self, stage, dtype):
        # Test that forced deepspeed reinit doesn't break the model. the forced re-init after
        # loading the best model in Trainer is there to workaround this bug in Deepspeed
        # https://github.com/microsoft/DeepSpeed/issues/1612
        #
        # The test is derived from a repro script submitted in this Issue:
        # https://github.com/huggingface/transformers/issues/17114
        #
        # One additional feature of this test is that we use a non-AdamW optimizer to test that
        # deepspeed doesn't fallback to AdamW, which would prevent the optimizer states from loading
        # correctly

        from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer  # noqa

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # will use HF Trainer optimizer
        del ds_config_dict["scheduler"]  # will use HF Trainer scheduler
879
        ds_config_dict["zero_force_ds_cpu_optimizer"] = False  # offload is not efficient w/o CPUAdam
880
881
882
        # must use this setting to get the reload path exercised
        ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True

883
        with mockenv_context(**self.dist_env_1_gpu):
884
            args_dict = {
885
886
                "per_device_train_batch_size": 1,
                "per_device_eval_batch_size": 1,
887
888
889
890
891
892
893
894
895
896
897
898
899
                "gradient_accumulation_steps": 1,
                "learning_rate": 1e-4,
                "num_train_epochs": 1,
                "do_train": True,
                "do_eval": True,
                "optim": "adafactor",
                "evaluation_strategy": "steps",
                "eval_steps": 1,
                "save_strategy": "steps",
                "save_steps": 1,
                "load_best_model_at_end": True,
                "max_steps": 1,
                "deepspeed": ds_config_dict,
900
                "report_to": "none",
901
902
903
            }

            training_args = TrainingArguments(output_dir, **args_dict)
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
            tokenizer = T5Tokenizer.from_pretrained(T5_TINY)
            model = T5ForConditionalGeneration.from_pretrained(T5_TINY)

            def _add_eos_to_examples(example):
                example["input_text"] = f"question: {example['question']}  context: {example['context']}"
                example["target_text"] = example["answers"]["text"][0] if len(example["answers"]["text"]) > 0 else ""
                return example

            def _convert_to_features(example_batch):
                input_encodings = tokenizer.batch_encode_plus(
                    example_batch["input_text"], pad_to_max_length=True, max_length=512, truncation=True
                )
                target_encodings = tokenizer.batch_encode_plus(
                    example_batch["target_text"], pad_to_max_length=True, max_length=16, truncation=True
                )

                encodings = {
                    "input_ids": input_encodings["input_ids"],
                    "attention_mask": input_encodings["attention_mask"],
                    "labels": target_encodings["input_ids"],
                }

                return encodings

            def get_dataset():
                data_file = str(self.tests_dir / "fixtures/tests_samples/SQUAD/sample.json")
930
                data_files = {"train": data_file, "validation": data_file}
931
932
933
934
935
936
937
                raw_datasets = datasets.load_dataset("json", data_files=data_files, field="data")
                train_dataset = raw_datasets["train"].map(_add_eos_to_examples).map(_convert_to_features, batched=True)
                valid_dataset = deepcopy(train_dataset)
                return train_dataset, valid_dataset

            train_dataset, eval_dataset = get_dataset()

938
939
940
941
942
943
944
945
946
947
            trainer = Trainer(
                model=model,
                tokenizer=tokenizer,
                args=training_args,
                train_dataset=train_dataset,
                eval_dataset=eval_dataset,
            )
            trainer.train()  # crash 1 was here
            trainer.evaluate()  # crash 2 was here

948
949
950

@slow
@require_deepspeed
951
@require_torch_accelerator
952
class TestDeepSpeedWithLauncher(TestCasePlus):
Patrick von Platen's avatar
Patrick von Platen committed
953
    """This class is for testing via an external script - can do multiple gpus"""
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

    # Tests to devise #
    #
    # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
    # the 2 gpus will generate prediction sequences that aren't of the same length - this is because
    # we had to code a special feature to sync the gpus when the predicted sequences aren't of the
    # same length. In general this will tested as a side-effect through a variety of other tests -
    # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
    # long as we have a few full tests running on zero3 + predict_with_generate this should be
    # mostly covered.
    #
    # but there are 5 variations on beam search in `generate`- with identical code branched with `if
    # synced_gpus`
    #
    # 2. most tests should probably be run on both: zero2 and zero3 configs
    #
970

971
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
972
    @require_torch_multi_accelerator
973
974
    def test_basic_distributed(self, stage, dtype):
        self.run_and_check(stage=stage, dtype=dtype, distributed=True)
975

976
977
    def test_do_eval_no_train(self):
        # testing only zero3 since zero2 makes no sense with inference
978
        self.run_and_check(
979
            stage=ZERO3,
980
            dtype=FP16,
981
982
            eval_steps=1,
            distributed=False,
983
984
            do_train=False,
            do_eval=True,
985
        )
986

987
988
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fp32_non_distributed(self, stage, dtype):
989
990
991
992
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
993
            dtype=dtype,
994
995
996
997
998
            model_name=T5_TINY,
            distributed=False,
            do_train=True,
            do_eval=True,
            quality_checks=False,
999
            fp32=True,
1000
1001
        )

1002
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
1003
    @require_torch_multi_accelerator
1004
    def test_fp32_distributed(self, stage, dtype):
1005
1006
1007
1008
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
1009
            dtype=dtype,
1010
1011
1012
1013
1014
            model_name=T5_TINY,
            distributed=True,
            do_train=True,
            do_eval=True,
            quality_checks=False,
1015
            fp32=True,
1016
1017
        )

1018
1019
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_resume_train_not_from_ds_checkpoint(self, stage, dtype):
1020
1021
1022
1023
1024
        # do normal training and then resume not from the deepspeed checkpoint but explicitly from
        # the saved model dir

        do_train = True
        do_eval = False
1025
1026
1027
1028
1029
1030
1031
1032
        kwargs = {
            "stage": stage,
            "dtype": dtype,
            "eval_steps": 1,
            "distributed": True,
            "do_train": do_train,
            "do_eval": do_eval,
        }
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

        # 1. normal training
        output_dir = self.run_and_check(**kwargs)

        # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
        # - i.e. the same path the model was saved to in step 1
        output_dir = self.run_trainer(**kwargs, model_name=output_dir)

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

1043
    @parameterized.expand(["bf16", "fp16", "fp32"])
1044
    @require_torch_multi_accelerator
1045
    def test_inference(self, dtype):
1046
        if dtype == "bf16" and not is_torch_bf16_available_on_device(torch_device):
1047
1048
            self.skipTest("test requires bfloat16 hardware support")

1049
1050
        # this is just inference, so no optimizer should be loaded
        # it only works for z3 (makes no sense with z1-z2)
1051
        fp32 = True if dtype == "fp32" else False
1052
1053
        self.run_and_check(
            stage=ZERO3,
1054
            dtype=FP16,
1055
1056
1057
1058
1059
            model_name=T5_TINY,
            distributed=True,
            do_train=False,
            do_eval=True,
            quality_checks=False,
1060
            fp32=fp32,
1061
1062
        )

1063
    def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True):
1064
1065
1066
        if do_train:
            train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
            self.assertIn("train_samples_per_second", train_metrics)
1067
1068
            if quality_checks:
                self.assertGreater(train_metrics["train_samples_per_second"], 0.5)
1069
1070
1071
1072

        if do_eval:
            eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
            self.assertIn("eval_bleu", eval_metrics)
1073
1074
            if quality_checks:
                self.assertGreater(eval_metrics["eval_bleu"], 1)
1075
1076

    # XXX: need to do better validation beyond just that the run was successful
1077
1078
1079
    def run_and_check(
        self,
        stage,
1080
        dtype,
1081
1082
1083
1084
1085
1086
        model_name: str = T5_SMALL,
        eval_steps: int = 10,
        distributed: bool = True,
        do_train: bool = True,
        do_eval: bool = True,
        quality_checks: bool = True,
1087
        fp32: bool = False,
1088
1089
        extra_args_str: str = None,
        remove_args_str: str = None,
1090
1091
    ):
        # we are doing quality testing so using a small real model
1092
        output_dir = self.run_trainer(
1093
            stage=stage,
1094
            dtype=dtype,
1095
            model_name=model_name,
1096
            eval_steps=eval_steps,
1097
            num_train_epochs=1,
1098
1099
            do_train=do_train,
            do_eval=do_eval,
1100
            distributed=distributed,
1101
            fp32=fp32,
1102
1103
1104
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
1105

1106
        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks)
1107
1108

        return output_dir
1109
1110
1111

    def run_trainer(
        self,
1112
        stage: str,
1113
        dtype: str,
1114
        model_name: str,
1115
1116
1117
1118
        eval_steps: int = 10,
        num_train_epochs: int = 1,
        do_train: bool = False,
        do_eval: bool = True,
1119
        distributed: bool = True,
1120
        fp32: bool = False,
1121
1122
1123
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
1124
        max_len = 32
Sylvain Gugger's avatar
Sylvain Gugger committed
1125
        data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
1126
1127
1128
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
1129
1130
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
1131
1132
1133
1134
1135
1136
1137
            --output_dir {output_dir}
            --overwrite_output_dir
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --warmup_steps 8
            --predict_with_generate
1138
1139
            --save_steps 0
            --eval_steps {eval_steps}
1140
1141
            --group_by_length
            --label_smoothing_factor 0.1
1142
1143
            --source_lang en
            --target_lang ro
1144
            --report_to none
1145
        """.split()
1146
1147
        args.extend(["--source_prefix", '"translate English to Romanian: "'])

1148
1149
        if not fp32:
            args.extend([f"--{dtype}"])
1150

1151
1152
1153
1154
1155
1156
1157
        actions = 0
        if do_train:
            actions += 1
            args.extend(
                f"""
            --do_train
            --num_train_epochs {str(num_train_epochs)}
1158
            --max_train_samples 16
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
            --per_device_train_batch_size 2
            --learning_rate 3e-3
            """.split()
            )

        if do_eval:
            actions += 1
            args.extend(
                """
            --do_eval
1169
            --max_eval_samples 16
1170
1171
1172
1173
1174
            --per_device_eval_batch_size 2
            """.split()
            )

        assert actions > 0, "need at least do_train or do_eval for the test to run"
1175
1176
1177
1178

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

1179
        # currently only works for bool args
1180
1181
1182
1183
        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

1184
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
1185
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
1186
        launcher = get_launcher(distributed)
1187
1188

        cmd = launcher + script + args + ds_args
1189
        # keep for quick debug
1190
1191
1192
1193
1194
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir

1195
1196
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_clm(self, stage, dtype):
1197
1198
1199
1200
1201
1202
        # this test exercises model.resize_token_embeddings() which requires param gathering outside
        # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
1203
            --model_name_or_path {GPT2_TINY}
1204
1205
1206
1207
1208
1209
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
1210
1211
1212
1213
            --max_train_samples 16
            --max_eval_samples 16
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
1214
1215
            --num_train_epochs 1
            --warmup_steps 8
1216
            --block_size 64
1217
            --report_to none
1218
1219
            """.split()

1220
1221
        args.extend([f"--{dtype}"])

1222
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
1223
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
1224
        launcher = get_launcher(distributed=True)
1225
1226
1227
1228

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
1229
1230
        execute_subprocess_async(cmd, env=self.get_env())

1231
    def test_clm_from_config_zero3_fp16(self):
1232
1233
1234
1235
1236
1237
        # this test exercises AutoModel.from_config(config) - to ensure zero.Init is called

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_type gpt2
1238
            --tokenizer_name {GPT2_TINY}
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --max_train_samples 4
            --per_device_train_batch_size 2
            --num_train_epochs 1
            --warmup_steps 8
            --block_size 8
            --fp16
            --report_to none
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split()
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
1255
        launcher = get_launcher(distributed=True)
1256
1257
1258
1259
1260
1261

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        with CaptureStderr() as cs:
            execute_subprocess_async(cmd, env=self.get_env())
1262
        self.assertIn("Detected DeepSpeed ZeRO-3", cs.err)