"scripts/vscode:/vscode.git/clone" did not exist on "dcef7c8f630244f79a687f361db073dc58bd75c9"
test_deepspeed.py 40.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import dataclasses
16
import io
17
import json
18
19
import os
import unittest
20
from copy import deepcopy
21

22
from parameterized import parameterized
23
from transformers import AutoModel, TrainingArguments, is_torch_available, logging
24
from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_available
25
from transformers.file_utils import WEIGHTS_NAME
26
from transformers.testing_utils import (
27
    CaptureLogger,
28
    CaptureStd,
29
    CaptureStderr,
30
    LoggingLevel,
31
32
33
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
34
    mockenv_context,
35
    require_deepspeed,
36
37
38
39
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)
40
from transformers.trainer_utils import get_last_checkpoint, set_seed
41

42
from ..trainer.test_trainer import TrainerIntegrationCommon  # noqa
43

44

45
46
if is_torch_available():
    from ..trainer.test_trainer import RegressionModelConfig, RegressionPreTrainedModel, get_regression_trainer  # noqa
47
48


49
set_seed(42)
50

51
52
53
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"

54
T5_SMALL = "t5-small"
55
T5_TINY = "patrickvonplaten/t5-tiny-random"
56
GPT2_TINY = "sshleifer/tiny-gpt2"
57
58


59
60
61
62
63
def load_json(path):
    with open(path) as f:
        return json.load(f)


Stas Bekman's avatar
Stas Bekman committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
def get_master_port(real_launcher=False):
    """
    When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
    the issue is that once the port is tied it can't be used anywhere else outside of this process,
    since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
    able to run both emulated launcher and normal launcher tests we need 2 distinct ports.

    This function will give the right port in the right context. For real launcher it'll give the
    base port, for emulated launcher it'll give the base port + 1. In both cases a string is
    returned.

    Args:
        `real_launcher`: whether a real launcher is going to be used, or the emulated one

    """

    master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    if not real_launcher:
        master_port_base = str(int(master_port_base) + 1)
    return master_port_base


86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def require_deepspeed_aio(test_case):
    """
    Decorator marking a test that requires deepspeed aio (nvme)
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)

    import deepspeed
    from deepspeed.ops.aio import AsyncIOBuilder

    if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]:
        return unittest.skip("test requires deepspeed async-io")(test_case)
    else:
        return test_case


102
103
if is_deepspeed_available():
    from deepspeed.utils import logger as deepspeed_logger  # noqa
104
    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
105
    from transformers.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled  # noqa
106

107
108
109
110
111
112
113

def get_launcher(distributed=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
    num_gpus = min(2, get_gpu_count()) if distributed else 1
Stas Bekman's avatar
Stas Bekman committed
114
    master_port = get_master_port(real_launcher=True)
115
    return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
116
117


118
119
120
121
122
ZERO2 = "zero2"
ZERO3 = "zero3"
stages = [ZERO2, ZERO3]


123
124
125
126
127
128
129
130
131
132
@require_deepspeed
@require_torch_gpu
class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """
    Testing non-Trainer DeepSpeed integration
    """

    def setUp(self):
        super().setUp()

Stas Bekman's avatar
Stas Bekman committed
133
        master_port = get_master_port(real_launcher=False)
134
        self.dist_env_1_gpu = dict(
135
            MASTER_ADDR="localhost", MASTER_PORT=master_port, RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        )

    def test_init_zero3(self):
        # test that zero.Init() works correctly under zero3
        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        # now remove zero optimization
        del ds_config["zero_optimization"]
        dschf = HfDeepSpeedConfig(ds_config)

        self.assertFalse(dschf.is_zero3())
        self.assertFalse(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)


174
@require_deepspeed
175
@require_torch_gpu
176
177
178
179
180
class TrainerIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """

    This class is for testing directly via get_regression_trainer

181
182
183
184
185
186
187
188
189
190
191
192
193
    It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
    which we can re-use here.

    Important: this class' setup can only work with a single gpu because it runs within the current
    pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.

    Note: if any of the tests of this class get run there will be at least one gpu occupied by them
    until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
    won't be released until this pytest worker exits.

    This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
    processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
    is not a bug.
194
    """
195
196
197

    def setUp(self):
        super().setUp()
198
199
200
201
202

        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

Stas Bekman's avatar
Stas Bekman committed
203
        master_port = get_master_port(real_launcher=False)
204
        self.dist_env_1_gpu = dict(
205
            MASTER_ADDR="localhost", MASTER_PORT=master_port, RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
206
        )
207

208
209
210
211
        self.ds_config_file = dict(
            zero2=f"{self.test_file_dir_str}/ds_config_zero2.json",
            zero3=f"{self.test_file_dir_str}/ds_config_zero3.json",
        )
212
213
214

        # use self.get_config_dict(stage) to use these to ensure the original is not modified
        with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
215
216
217
            config_zero2 = json.load(f)
            # by default use fp16
            config_zero2["fp16"]["enabled"] = True
218
        with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
219
220
221
            config_zero3 = json.load(f)
            # by default use fp16
            config_zero3["fp16"]["enabled"] = True
222
223
            # This setting slows things down, so don't enable it by default unless needed by a test.
            # It's in the file as a demo for users since we want everything to work out of the box even if slower.
224
225
226
227
228
229
230
231
232
            config_zero3["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = False
        self.ds_config_dict = dict(
            zero2=config_zero2,
            zero3=config_zero3,
        )

    def get_config_dict(self, stage):
        # As some tests modify the dict, always make a copy
        return deepcopy(self.ds_config_dict[stage])
233
234

    # --- These tests are enough to run on one of zero stages --- #
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    def test_hf_ds_config_mismatch(self):

        ds_config = self.get_config_dict(ZERO2)

        # Purposefully configure these values to mismatch TrainingArguments values.
        # This currently doesn't cover all keys (but it could)
        per_device_train_batch_size = 2
        ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2

        ds_config["train_batch_size"] = 1000

        gradient_accumulation_steps = 2
        ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2

        max_grad_norm = 1.0
        ds_config["gradient_clipping"] = max_grad_norm + 0.1

        adam_beta1, adam_beta2 = 0.9, 0.99
        ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1]

        fp16 = True
        ds_config["fp16"]["enabled"] = not fp16

        keys = [
            "per_device_train_batch_size",
            "train_batch_size",
            "gradient_accumulation_steps",
            "max_grad_norm",
            "betas",
            "fp16",
        ]

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                local_rank=0,
                fp16=fp16,
                deepspeed=ds_config,
                per_device_train_batch_size=per_device_train_batch_size,
                gradient_accumulation_steps=gradient_accumulation_steps,
                max_grad_norm=max_grad_norm,
                adam_beta1=adam_beta1,
                adam_beta2=adam_beta2,
            )
            with self.assertRaises(Exception) as context:
                trainer.train()

        for key in keys:
            self.assertTrue(
                key in str(context.exception),
                f"{key} is not in the exception message:\n{context.exception}",
            )

288
289
290
291
292
293
294
295
296
    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
297
298
299
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
300
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
301
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
302
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
303
304
305
306
307
308
309
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
310
311
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
312
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
313
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
314
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
315
316
317
318
319
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
320
        a = 0
321
        with mockenv_context(**self.dist_env_1_gpu):
322
323
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
324
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
325
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
326
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
327
328
329
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)
330

331
    @require_deepspeed_aio
332
333
334
335
336
337
338
339
340
    def test_stage3_nvme_offload(self):
        with mockenv_context(**self.dist_env_1_gpu):
            # this actually doesn't have to be on NVMe, any storage will do since this test only
            # runs a simple check that we can use some directory as if it were NVMe
            nvme_path = self.get_auto_remove_tmp_dir()
            nvme_config = dict(device="nvme", nvme_path=nvme_path)
            ds_config_zero3_dict = self.get_config_dict(ZERO3)
            ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config
            ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config
341
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict)
342
            with CaptureLogger(deepspeed_logger) as cl:
343
                trainer.train()
344
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
345
346
347
348
349

    # --- These tests need to run on both zero stages --- #

    @parameterized.expand(stages)
    def test_hf_optimizer_with_offload(self, stage):
350
        # non-DS optimizers can be used with ZERO-offload (as long as they have both CPU and GPU implementation (except LAMB))
351
352
353
        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
        # force cpu offload
354
        ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
355
        with mockenv_context(**self.dist_env_1_gpu):
356
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_dict)
357
            with CaptureLogger(deepspeed_logger) as cl:
358
                trainer.train()
359
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
360

361
362
363
364
365
366
367
    @parameterized.expand(stages)
    def test_fake_notebook_no_launcher(self, stage):
        # this setup emulates a notebook where a launcher needs to be emulated by hand

        # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
        # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
        # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
368
369
        # to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger.
        with mockenv_context(**self.dist_env_1_gpu):
370
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=self.get_config_dict(stage))
371
            with CaptureLogger(deepspeed_logger) as cl:
372
                trainer.train()
373
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
374
375
376

    @parameterized.expand(stages)
    def test_early_get_last_lr(self, stage):
377
378
379
380
381
382
383
384
385
386
387
388
389
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
            trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=8,
390
                fp16=True,
391
                deepspeed=self.get_config_dict(stage),
392
393
394
395
                per_device_train_batch_size=8,
                logging_steps=1,
            )
            trainer.train()
396
397
398
            post_train_a = trainer.model.a.item()

            # XXX: for some reason the following check fails with zero3 - not a broken but a
399
400
401
402
403
            # different qualitative outcome - as if optimizer did run
            # oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere
            # print(trainer.model.a.item())
            # print(trainer.model.b.item())
            # need to investigate at some point
404
405
            if stage == ZERO3:
                return
406
407
408

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
409
            self.assertEqual(post_train_a, a)
410

411
412
    @parameterized.expand(stages)
    def test_gradient_accumulation(self, stage):
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

428
429
430
431
432
433
434
435
436
        kwargs = dict(
            a=a,
            b=b,
            local_rank=0,
            train_len=train_len,
            fp16=True,
            deepspeed=self.get_config_dict(stage),
        )

437
438
        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
439
440
                **kwargs,
                per_device_train_batch_size=16,
441
442
443
444
445
446
447
448
449
450
451
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
452
                **kwargs,
453
                per_device_train_batch_size=4,
454
                gradient_accumulation_steps=4,
455
456
457
458
459
460
461
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

462
463
464
465
        # training with half the batch size but accumulation steps as 2 should give the same
        # weights, but sometimes get a slight difference still of 1e-6
        self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5)
        self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5)
466
467

        # see the note above how to get identical loss on a small bs
468
        self.assertAlmostEqual(no_grad_accum_loss, yes_grad_accum_loss, places=2)
469

470
    def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage):
471
472
473
        # adapted from TrainerIntegrationCommon.check_saved_checkpoints

        file_list = [WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

        if stage == ZERO2:
            ds_file_list = ["mp_rank_00_model_states.pt"]
        elif stage == ZERO3:
            ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
        else:
            raise ValueError(f"unknown stage {stage}")

        # XXX: this can be recoded and then removed once we require deepspeed>0.3.13
        from packaging import version

        import deepspeed

        if version.parse(deepspeed.__version__) > version.parse("0.3.13"):
            ds_file_list.append("zero_pp_rank_0_mp_rank_00_optim_states.pt")
        else:
            ds_file_list.append("zero_pp_rank_0_mp_rank_00optim_states.pt")
491
492
493

        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
494
            self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
495
496
497

            # common files
            for filename in file_list:
498
499
                path = os.path.join(checkpoint, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
500
501
502
503
504
505

            # ds files
            ds_path = os.path.join(checkpoint, f"global_step{step}")
            for filename in ds_file_list:
                # filename = os.path.join(path, filename)
                # print(filename)
506
507
                path = os.path.join(ds_path, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
508

509
510
    @parameterized.expand(stages)
    def test_save_checkpoints(self, stage):
511
512
        # adapted from  TrainerIntegrationTest.test_save_checkpoints

513
        freq = 5
514
        output_dir = self.get_auto_remove_tmp_dir()
515
        ds_config_dict = self.get_config_dict(stage)
516
        ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
517
518
        if stage == ZERO3:
            ds_config_dict["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = True
519
520
521
522
523
524

        # save checkpoints
        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                output_dir=output_dir,
                save_steps=freq,
525
                fp16=True,
526
527
528
529
530
                deepspeed=ds_config_dict,
            )
            trainer.train()

        total = int(self.n_epochs * 64 / self.batch_size)
531
        self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage)
532

533
534
535
536
537
538
    @parameterized.expand(stages)
    def test_can_resume_training_errors(self, stage):

        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = self.get_config_dict(stage)
            output_dir = self.get_auto_remove_tmp_dir()
539
            trainer = get_regression_trainer(output_dir=output_dir, fp16=True, deepspeed=ds_config_dict)
540
541
542
543
544
545
546
547

            # 1. fail to find any checkpoint - due a fresh output_dir
            with self.assertRaises(Exception) as context:
                trainer.train(resume_from_checkpoint=True)
            self.assertTrue(
                "No valid checkpoint found in output directory" in str(context.exception),
                f"got exception: {context.exception}",
            )
548

549
550
551
552
553
554
555
556
557
558
559
560
            # 2. fail to find a bogus checkpoint
            with self.assertRaises(Exception) as context:
                checkpoint = os.path.join(output_dir, "checkpoint-5")
                trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
            self.assertTrue(
                "Can't find a valid checkpoint at" in str(context.exception), f"got exception: {context.exception}"
            )

    @parameterized.expand(stages)
    def test_can_resume_training_normal(self, stage):
        # adapted from TrainerIntegrationTest.test_can_resume_training
        # test normal resume for each stage separately, error-handling is tested in a different test
561
        output_dir = self.get_auto_remove_tmp_dir()
562
        ds_config_dict = self.get_config_dict(stage)
563
        ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
564
565
566
        if stage == ZERO3:
            ds_config_dict["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = True

567
568
569
        kwargs = dict(
            output_dir=output_dir, train_len=128, save_steps=5, learning_rate=0.1, fp16=True, deepspeed=ds_config_dict
        )
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(output_dir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(output_dir, "checkpoint-15")

            # Reinitialize trainer and load model
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

602
603
604
605
606
            # Finally, should be able to resume with the same trainer/same deepspeed engine instance
            # XXX: but currently this not possible due DS bug: https://github.com/microsoft/DeepSpeed/issues/1612
            # trainer.train(resume_from_checkpoint=checkpoint)
            # a workaround needs to be used that re-creates the deepspeed engine

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    @parameterized.expand(stages)
    def test_load_state_dict_from_zero_checkpoint(self, stage):
        # test that we can load fp32 weights directly from the zero checkpoint into the current model

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)

        kwargs = dict(
            output_dir=output_dir,
            train_len=4,
            per_device_train_batch_size=4,
            num_train_epochs=1,
            save_strategy="steps",
            save_steps=1,
            learning_rate=0.1,
            fp16=True,
            deepspeed=ds_config_dict,
        )

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint_dir = get_last_checkpoint(output_dir)
            model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)

            (a1, b1) = model.a.item(), model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

642
643
644
645
    def test_config_object(self):
        # test that we can switch from zero2 to zero3 in the same process for example
        # test is_zero, etc.
        output_dir = self.get_auto_remove_tmp_dir()
646
        kwargs = dict(output_dir=output_dir, train_len=8, fp16=True)
647

648
649
        ds_config_zero3_dict = self.get_config_dict("zero3")
        ds_config_zero2_dict = self.get_config_dict("zero2")
650

651
        with mockenv_context(**self.dist_env_1_gpu):
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test we can repeat that and with train this time
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            trainer.train()
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test zero3 is disabled
            trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs)
            self.assertFalse(is_deepspeed_zero3_enabled())

            # check config obj
            config = deepspeed_config()
            self.assertTrue(bool(config), "Deepspeed config should be accessible")

            del trainer
            # now weakref should gc the global and we shouldn't get anything here
            config = deepspeed_config()
            self.assertFalse(is_deepspeed_zero3_enabled())
            self.assertFalse(bool(config), "Deepspeed config should not be accessible")

674
675
676
677

@slow
@require_deepspeed
@require_torch_gpu
678
class TestDeepSpeedWithLauncher(TestCasePlus):
Patrick von Platen's avatar
Patrick von Platen committed
679
    """This class is for testing via an external script - can do multiple gpus"""
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

    # Tests to devise #
    #
    # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
    # the 2 gpus will generate prediction sequences that aren't of the same length - this is because
    # we had to code a special feature to sync the gpus when the predicted sequences aren't of the
    # same length. In general this will tested as a side-effect through a variety of other tests -
    # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
    # long as we have a few full tests running on zero3 + predict_with_generate this should be
    # mostly covered.
    #
    # but there are 5 variations on beam search in `generate`- with identical code branched with `if
    # synced_gpus`
    #
    # 2. most tests should probably be run on both: zero2 and zero3 configs
    #
696

697
    @require_torch_multi_gpu
698
699
700
    @parameterized.expand(stages)
    def test_basic_distributed(self, stage):
        self.run_and_check(stage=stage, distributed=True)
701

702
703
    def test_do_eval_no_train(self):
        # testing only zero3 since zero2 makes no sense with inference
704
        self.run_and_check(
705
            stage=ZERO3,
706
707
            eval_steps=1,
            distributed=False,
708
709
            do_train=False,
            do_eval=True,
710
        )
711

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
    @parameterized.expand(stages)
    def test_fp32_non_distributed(self, stage):
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
            model_name=T5_TINY,
            distributed=False,
            do_train=True,
            do_eval=True,
            quality_checks=False,
            fp16=False,
        )

    @require_torch_multi_gpu
    @parameterized.expand(stages)
    def test_fp32_distributed(self, stage):
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
            model_name=T5_TINY,
            distributed=True,
            do_train=True,
            do_eval=True,
            quality_checks=False,
            fp16=False,
        )

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
    @parameterized.expand(stages)
    def test_resume_train_not_from_ds_checkpoint(self, stage):
        # do normal training and then resume not from the deepspeed checkpoint but explicitly from
        # the saved model dir

        do_train = True
        do_eval = False
        kwargs = dict(stage=stage, eval_steps=1, distributed=True, do_train=do_train, do_eval=do_eval)

        # 1. normal training
        output_dir = self.run_and_check(**kwargs)

        # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
        # - i.e. the same path the model was saved to in step 1
        output_dir = self.run_trainer(**kwargs, model_name=output_dir)

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
    @require_torch_multi_gpu
    @parameterized.expand(["fp16", "fp32"])
    def test_inference(self, dtype):
        # this is just inference, so no optimizer should be loaded
        # it only works for z3 (makes no sense with z1-z2)
        fp16 = True if dtype == "fp16" else False
        self.run_and_check(
            stage=ZERO3,
            model_name=T5_TINY,
            distributed=True,
            do_train=False,
            do_eval=True,
            quality_checks=False,
            fp16=fp16,
        )

775
    def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True):
776
777
778
779

        if do_train:
            train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
            self.assertIn("train_samples_per_second", train_metrics)
780
781
            if quality_checks:
                self.assertGreater(train_metrics["train_samples_per_second"], 0.5)
782
783
784
785

        if do_eval:
            eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
            self.assertIn("eval_bleu", eval_metrics)
786
787
            if quality_checks:
                self.assertGreater(eval_metrics["eval_bleu"], 1)
788
789

    # XXX: need to do better validation beyond just that the run was successful
790
791
792
    def run_and_check(
        self,
        stage,
793
794
795
796
797
798
799
800
801
        model_name: str = T5_SMALL,
        eval_steps: int = 10,
        distributed: bool = True,
        do_train: bool = True,
        do_eval: bool = True,
        quality_checks: bool = True,
        fp16: bool = True,
        extra_args_str: str = None,
        remove_args_str: str = None,
802
803
804
    ):

        # we are doing quality testing so using a small real model
805
        output_dir = self.run_trainer(
806
            stage=stage,
807
            model_name=model_name,
808
            eval_steps=eval_steps,
809
            num_train_epochs=1,
810
811
            do_train=do_train,
            do_eval=do_eval,
812
            distributed=distributed,
813
            fp16=fp16,
814
815
816
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
817

818
        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks)
819
820

        return output_dir
821
822
823

    def run_trainer(
        self,
824
        stage: str,
825
        model_name: str,
826
827
828
829
        eval_steps: int = 10,
        num_train_epochs: int = 1,
        do_train: bool = False,
        do_eval: bool = True,
830
        distributed: bool = True,
831
        fp16: bool = True,
832
833
834
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
835
        max_len = 32
Sylvain Gugger's avatar
Sylvain Gugger committed
836
        data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
837
838
839
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
840
841
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
842
843
844
845
846
847
848
            --output_dir {output_dir}
            --overwrite_output_dir
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --warmup_steps 8
            --predict_with_generate
849
850
            --save_steps 0
            --eval_steps {eval_steps}
851
852
            --group_by_length
            --label_smoothing_factor 0.1
853
854
            --source_lang en
            --target_lang ro
855
            --report_to none
856
        """.split()
857
858
        args.extend(["--source_prefix", '"translate English to Romanian: "'])

859
860
861
        if fp16:
            args.extend(["--fp16"])

862
863
864
865
866
867
868
        actions = 0
        if do_train:
            actions += 1
            args.extend(
                f"""
            --do_train
            --num_train_epochs {str(num_train_epochs)}
869
            --max_train_samples 16
870
871
872
873
874
875
876
877
878
879
            --per_device_train_batch_size 2
            --learning_rate 3e-3
            """.split()
            )

        if do_eval:
            actions += 1
            args.extend(
                """
            --do_eval
880
            --max_eval_samples 16
881
882
883
884
885
            --per_device_eval_batch_size 2
            """.split()
            )

        assert actions > 0, "need at least do_train or do_eval for the test to run"
886
887
888
889

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

890
        # currently only works for bool args
891
892
893
894
        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

895
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
896
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
897
        launcher = get_launcher(distributed)
898
899

        cmd = launcher + script + args + ds_args
900
        # keep for quick debug
901
902
903
904
905
906
907
908
909
910
911
912
913
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir

    @parameterized.expand(stages)
    def test_clm(self, stage):
        # this test exercises model.resize_token_embeddings() which requires param gathering outside
        # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
914
            --model_name_or_path {GPT2_TINY}
915
916
917
918
919
920
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
921
922
923
924
            --max_train_samples 16
            --max_eval_samples 16
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
925
926
            --num_train_epochs 1
            --warmup_steps 8
927
928
            --block_size 64
            --fp16
929
            --report_to none
930
931
932
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
933
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
934
        launcher = get_launcher(distributed=True)
935
936
937
938

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
939
940
        execute_subprocess_async(cmd, env=self.get_env())

941
942
943
944
945
946
947
    def test_clm_from_config_zero3(self):
        # this test exercises AutoModel.from_config(config) - to ensure zero.Init is called

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_type gpt2
948
            --tokenizer_name {GPT2_TINY}
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --max_train_samples 4
            --per_device_train_batch_size 2
            --num_train_epochs 1
            --warmup_steps 8
            --block_size 8
            --fp16
            --report_to none
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split()
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
965
        launcher = get_launcher(distributed=True)
966
967
968
969
970
971

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        with CaptureStderr() as cs:
            execute_subprocess_async(cmd, env=self.get_env())
972
        self.assertIn("Detected DeepSpeed ZeRO-3", cs.err)
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007

    @parameterized.expand(stages)
    def test_load_best_model(self, stage):
        # this test exercises --load_best_model_at_end - the key is being able to resume after some training

        data_dir = self.tests_dir / "fixtures/tests_samples/wmt_en_ro"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {T5_TINY}
            --tokenizer_name {T5_TINY}
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
            --output_dir {output_dir}
            --overwrite_output_dir
            --source_lang en
            --target_lang ro
            --do_train
            --max_train_samples 3
            --do_eval
            --max_eval_samples 1
            --logging_strategy steps
            --logging_steps 1
            --evaluation_strategy steps
            --eval_steps 1
            --save_strategy steps
            --save_steps 1
            --load_best_model_at_end
            --per_device_train_batch_size 1
            --per_device_eval_batch_size 1
            --num_train_epochs 1
            --fp16
            --report_to none
            """.split()
        args.extend(["--source_prefix", "translate English to Romanian: "])

1008
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
1009
1010
1011
1012
1013
1014
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
        launcher = get_launcher(distributed=False)

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
1015
        with CaptureStd() as cs:
1016
1017
            execute_subprocess_async(cmd, env=self.get_env())
        # enough to test it didn't fail
1018
        self.assertIn("DeepSpeed info", cs.out)