test_deepspeed.py 40.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import dataclasses
16
import io
17
import json
18
19
import os
import unittest
20
from copy import deepcopy
21

22
from parameterized import parameterized
23
from transformers import AutoModel, TrainingArguments, is_torch_available, logging
24
from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_available
25
from transformers.file_utils import WEIGHTS_NAME
26
from transformers.testing_utils import (
27
    CaptureLogger,
28
    CaptureStd,
29
    CaptureStderr,
30
    ExtendSysPath,
31
    LoggingLevel,
32
33
34
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
35
    mockenv_context,
36
    require_deepspeed,
37
38
39
40
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)
41
from transformers.trainer_utils import get_last_checkpoint, set_seed
42
43


44
45
46
tests_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
root_dir = os.path.dirname(tests_dir)
with ExtendSysPath(tests_dir):
47
48
49
    from test_trainer import TrainerIntegrationCommon  # noqa

    if is_torch_available():
50
        from test_trainer import RegressionModelConfig, RegressionPreTrainedModel, get_regression_trainer  # noqa
51
52


53
set_seed(42)
54

55
56
57
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"

58
T5_SMALL = "t5-small"
59
T5_TINY = "patrickvonplaten/t5-tiny-random"
60
GPT2_TINY = "sshleifer/tiny-gpt2"
61
62


63
64
65
66
67
def load_json(path):
    with open(path) as f:
        return json.load(f)


Stas Bekman's avatar
Stas Bekman committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def get_master_port(real_launcher=False):
    """
    When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
    the issue is that once the port is tied it can't be used anywhere else outside of this process,
    since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
    able to run both emulated launcher and normal launcher tests we need 2 distinct ports.

    This function will give the right port in the right context. For real launcher it'll give the
    base port, for emulated launcher it'll give the base port + 1. In both cases a string is
    returned.

    Args:
        `real_launcher`: whether a real launcher is going to be used, or the emulated one

    """

    master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    if not real_launcher:
        master_port_base = str(int(master_port_base) + 1)
    return master_port_base


90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
def require_deepspeed_aio(test_case):
    """
    Decorator marking a test that requires deepspeed aio (nvme)
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)

    import deepspeed
    from deepspeed.ops.aio import AsyncIOBuilder

    if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]:
        return unittest.skip("test requires deepspeed async-io")(test_case)
    else:
        return test_case


106
107
if is_deepspeed_available():
    from deepspeed.utils import logger as deepspeed_logger  # noqa
108
    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
109
    from transformers.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled  # noqa
110

111
112
113
114
115
116
117

def get_launcher(distributed=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
    num_gpus = min(2, get_gpu_count()) if distributed else 1
Stas Bekman's avatar
Stas Bekman committed
118
    master_port = get_master_port(real_launcher=True)
119
    return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
120
121


122
123
124
125
126
ZERO2 = "zero2"
ZERO3 = "zero3"
stages = [ZERO2, ZERO3]


127
128
129
130
131
132
133
134
135
136
@require_deepspeed
@require_torch_gpu
class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """
    Testing non-Trainer DeepSpeed integration
    """

    def setUp(self):
        super().setUp()

Stas Bekman's avatar
Stas Bekman committed
137
        master_port = get_master_port(real_launcher=False)
138
        self.dist_env_1_gpu = dict(
139
            MASTER_ADDR="localhost", MASTER_PORT=master_port, RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        )

    def test_init_zero3(self):
        # test that zero.Init() works correctly under zero3
        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        # now remove zero optimization
        del ds_config["zero_optimization"]
        dschf = HfDeepSpeedConfig(ds_config)

        self.assertFalse(dschf.is_zero3())
        self.assertFalse(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)


178
@require_deepspeed
179
@require_torch_gpu
180
181
182
183
184
class TrainerIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """

    This class is for testing directly via get_regression_trainer

185
186
187
188
189
190
191
192
193
194
195
196
197
    It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
    which we can re-use here.

    Important: this class' setup can only work with a single gpu because it runs within the current
    pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.

    Note: if any of the tests of this class get run there will be at least one gpu occupied by them
    until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
    won't be released until this pytest worker exits.

    This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
    processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
    is not a bug.
198
    """
199
200
201

    def setUp(self):
        super().setUp()
202
203
204
205
206

        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

Stas Bekman's avatar
Stas Bekman committed
207
        master_port = get_master_port(real_launcher=False)
208
        self.dist_env_1_gpu = dict(
209
            MASTER_ADDR="localhost", MASTER_PORT=master_port, RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
210
        )
211

212
213
214
215
        self.ds_config_file = dict(
            zero2=f"{self.test_file_dir_str}/ds_config_zero2.json",
            zero3=f"{self.test_file_dir_str}/ds_config_zero3.json",
        )
216
217
218

        # use self.get_config_dict(stage) to use these to ensure the original is not modified
        with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
219
220
221
            config_zero2 = json.load(f)
            # by default use fp16
            config_zero2["fp16"]["enabled"] = True
222
        with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
223
224
225
            config_zero3 = json.load(f)
            # by default use fp16
            config_zero3["fp16"]["enabled"] = True
226
227
            # This setting slows things down, so don't enable it by default unless needed by a test.
            # It's in the file as a demo for users since we want everything to work out of the box even if slower.
228
229
230
231
232
233
234
235
236
            config_zero3["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = False
        self.ds_config_dict = dict(
            zero2=config_zero2,
            zero3=config_zero3,
        )

    def get_config_dict(self, stage):
        # As some tests modify the dict, always make a copy
        return deepcopy(self.ds_config_dict[stage])
237
238

    # --- These tests are enough to run on one of zero stages --- #
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    def test_hf_ds_config_mismatch(self):

        ds_config = self.get_config_dict(ZERO2)

        # Purposefully configure these values to mismatch TrainingArguments values.
        # This currently doesn't cover all keys (but it could)
        per_device_train_batch_size = 2
        ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2

        ds_config["train_batch_size"] = 1000

        gradient_accumulation_steps = 2
        ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2

        max_grad_norm = 1.0
        ds_config["gradient_clipping"] = max_grad_norm + 0.1

        adam_beta1, adam_beta2 = 0.9, 0.99
        ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1]

        fp16 = True
        ds_config["fp16"]["enabled"] = not fp16

        keys = [
            "per_device_train_batch_size",
            "train_batch_size",
            "gradient_accumulation_steps",
            "max_grad_norm",
            "betas",
            "fp16",
        ]

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                local_rank=0,
                fp16=fp16,
                deepspeed=ds_config,
                per_device_train_batch_size=per_device_train_batch_size,
                gradient_accumulation_steps=gradient_accumulation_steps,
                max_grad_norm=max_grad_norm,
                adam_beta1=adam_beta1,
                adam_beta2=adam_beta2,
            )
            with self.assertRaises(Exception) as context:
                trainer.train()

        for key in keys:
            self.assertTrue(
                key in str(context.exception),
                f"{key} is not in the exception message:\n{context.exception}",
            )

292
293
294
295
296
297
298
299
300
    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
301
302
303
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
304
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
305
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
306
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
307
308
309
310
311
312
313
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
314
315
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
316
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
317
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
318
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
319
320
321
322
323
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
324
        a = 0
325
        with mockenv_context(**self.dist_env_1_gpu):
326
327
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
328
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
329
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
330
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
331
332
333
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)
334

335
    @require_deepspeed_aio
336
337
338
339
340
341
342
343
344
    def test_stage3_nvme_offload(self):
        with mockenv_context(**self.dist_env_1_gpu):
            # this actually doesn't have to be on NVMe, any storage will do since this test only
            # runs a simple check that we can use some directory as if it were NVMe
            nvme_path = self.get_auto_remove_tmp_dir()
            nvme_config = dict(device="nvme", nvme_path=nvme_path)
            ds_config_zero3_dict = self.get_config_dict(ZERO3)
            ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config
            ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config
345
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict)
346
            with CaptureLogger(deepspeed_logger) as cl:
347
                trainer.train()
348
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
349
350
351
352
353

    # --- These tests need to run on both zero stages --- #

    @parameterized.expand(stages)
    def test_hf_optimizer_with_offload(self, stage):
354
        # non-DS optimizers can be used with ZERO-offload (as long as they have both CPU and GPU implementation (except LAMB))
355
356
357
        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
        # force cpu offload
358
        ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
359
        with mockenv_context(**self.dist_env_1_gpu):
360
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_dict)
361
            with CaptureLogger(deepspeed_logger) as cl:
362
                trainer.train()
363
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
364

365
366
367
368
369
370
371
    @parameterized.expand(stages)
    def test_fake_notebook_no_launcher(self, stage):
        # this setup emulates a notebook where a launcher needs to be emulated by hand

        # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
        # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
        # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
372
373
        # to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger.
        with mockenv_context(**self.dist_env_1_gpu):
374
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=self.get_config_dict(stage))
375
            with CaptureLogger(deepspeed_logger) as cl:
376
                trainer.train()
377
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
378
379
380

    @parameterized.expand(stages)
    def test_early_get_last_lr(self, stage):
381
382
383
384
385
386
387
388
389
390
391
392
393
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
            trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=8,
394
                fp16=True,
395
                deepspeed=self.get_config_dict(stage),
396
397
398
399
                per_device_train_batch_size=8,
                logging_steps=1,
            )
            trainer.train()
400
401
402
            post_train_a = trainer.model.a.item()

            # XXX: for some reason the following check fails with zero3 - not a broken but a
403
404
405
406
407
            # different qualitative outcome - as if optimizer did run
            # oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere
            # print(trainer.model.a.item())
            # print(trainer.model.b.item())
            # need to investigate at some point
408
409
            if stage == ZERO3:
                return
410
411
412

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
413
            self.assertEqual(post_train_a, a)
414

415
416
    @parameterized.expand(stages)
    def test_gradient_accumulation(self, stage):
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

432
433
434
435
436
437
438
439
440
        kwargs = dict(
            a=a,
            b=b,
            local_rank=0,
            train_len=train_len,
            fp16=True,
            deepspeed=self.get_config_dict(stage),
        )

441
442
        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
443
444
                **kwargs,
                per_device_train_batch_size=16,
445
446
447
448
449
450
451
452
453
454
455
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
456
                **kwargs,
457
                per_device_train_batch_size=4,
458
                gradient_accumulation_steps=4,
459
460
461
462
463
464
465
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

466
467
468
469
        # training with half the batch size but accumulation steps as 2 should give the same
        # weights, but sometimes get a slight difference still of 1e-6
        self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5)
        self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5)
470
471

        # see the note above how to get identical loss on a small bs
472
        self.assertAlmostEqual(no_grad_accum_loss, yes_grad_accum_loss, places=2)
473

474
    def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage):
475
476
477
        # adapted from TrainerIntegrationCommon.check_saved_checkpoints

        file_list = [WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

        if stage == ZERO2:
            ds_file_list = ["mp_rank_00_model_states.pt"]
        elif stage == ZERO3:
            ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
        else:
            raise ValueError(f"unknown stage {stage}")

        # XXX: this can be recoded and then removed once we require deepspeed>0.3.13
        from packaging import version

        import deepspeed

        if version.parse(deepspeed.__version__) > version.parse("0.3.13"):
            ds_file_list.append("zero_pp_rank_0_mp_rank_00_optim_states.pt")
        else:
            ds_file_list.append("zero_pp_rank_0_mp_rank_00optim_states.pt")
495
496
497

        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
498
            self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
499
500
501

            # common files
            for filename in file_list:
502
503
                path = os.path.join(checkpoint, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
504
505
506
507
508
509

            # ds files
            ds_path = os.path.join(checkpoint, f"global_step{step}")
            for filename in ds_file_list:
                # filename = os.path.join(path, filename)
                # print(filename)
510
511
                path = os.path.join(ds_path, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
512

513
514
    @parameterized.expand(stages)
    def test_save_checkpoints(self, stage):
515
516
        # adapted from  TrainerIntegrationTest.test_save_checkpoints

517
        freq = 5
518
        output_dir = self.get_auto_remove_tmp_dir()
519
        ds_config_dict = self.get_config_dict(stage)
520
        ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
521
522
        if stage == ZERO3:
            ds_config_dict["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = True
523
524
525
526
527
528

        # save checkpoints
        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                output_dir=output_dir,
                save_steps=freq,
529
                fp16=True,
530
531
532
533
534
                deepspeed=ds_config_dict,
            )
            trainer.train()

        total = int(self.n_epochs * 64 / self.batch_size)
535
        self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage)
536

537
538
539
540
541
542
    @parameterized.expand(stages)
    def test_can_resume_training_errors(self, stage):

        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = self.get_config_dict(stage)
            output_dir = self.get_auto_remove_tmp_dir()
543
            trainer = get_regression_trainer(output_dir=output_dir, fp16=True, deepspeed=ds_config_dict)
544
545
546
547
548
549
550
551

            # 1. fail to find any checkpoint - due a fresh output_dir
            with self.assertRaises(Exception) as context:
                trainer.train(resume_from_checkpoint=True)
            self.assertTrue(
                "No valid checkpoint found in output directory" in str(context.exception),
                f"got exception: {context.exception}",
            )
552

553
554
555
556
557
558
559
560
561
562
563
564
            # 2. fail to find a bogus checkpoint
            with self.assertRaises(Exception) as context:
                checkpoint = os.path.join(output_dir, "checkpoint-5")
                trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
            self.assertTrue(
                "Can't find a valid checkpoint at" in str(context.exception), f"got exception: {context.exception}"
            )

    @parameterized.expand(stages)
    def test_can_resume_training_normal(self, stage):
        # adapted from TrainerIntegrationTest.test_can_resume_training
        # test normal resume for each stage separately, error-handling is tested in a different test
565
        output_dir = self.get_auto_remove_tmp_dir()
566
        ds_config_dict = self.get_config_dict(stage)
567
        ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
568
569
570
        if stage == ZERO3:
            ds_config_dict["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = True

571
572
573
        kwargs = dict(
            output_dir=output_dir, train_len=128, save_steps=5, learning_rate=0.1, fp16=True, deepspeed=ds_config_dict
        )
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(output_dir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(output_dir, "checkpoint-15")

            # Reinitialize trainer and load model
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

606
607
608
609
610
            # Finally, should be able to resume with the same trainer/same deepspeed engine instance
            # XXX: but currently this not possible due DS bug: https://github.com/microsoft/DeepSpeed/issues/1612
            # trainer.train(resume_from_checkpoint=checkpoint)
            # a workaround needs to be used that re-creates the deepspeed engine

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    @parameterized.expand(stages)
    def test_load_state_dict_from_zero_checkpoint(self, stage):
        # test that we can load fp32 weights directly from the zero checkpoint into the current model

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)

        kwargs = dict(
            output_dir=output_dir,
            train_len=4,
            per_device_train_batch_size=4,
            num_train_epochs=1,
            save_strategy="steps",
            save_steps=1,
            learning_rate=0.1,
            fp16=True,
            deepspeed=ds_config_dict,
        )

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint_dir = get_last_checkpoint(output_dir)
            model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)

            (a1, b1) = model.a.item(), model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

646
647
648
649
    def test_config_object(self):
        # test that we can switch from zero2 to zero3 in the same process for example
        # test is_zero, etc.
        output_dir = self.get_auto_remove_tmp_dir()
650
        kwargs = dict(output_dir=output_dir, train_len=8, fp16=True)
651

652
653
        ds_config_zero3_dict = self.get_config_dict("zero3")
        ds_config_zero2_dict = self.get_config_dict("zero2")
654

655
        with mockenv_context(**self.dist_env_1_gpu):
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test we can repeat that and with train this time
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            trainer.train()
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test zero3 is disabled
            trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs)
            self.assertFalse(is_deepspeed_zero3_enabled())

            # check config obj
            config = deepspeed_config()
            self.assertTrue(bool(config), "Deepspeed config should be accessible")

            del trainer
            # now weakref should gc the global and we shouldn't get anything here
            config = deepspeed_config()
            self.assertFalse(is_deepspeed_zero3_enabled())
            self.assertFalse(bool(config), "Deepspeed config should not be accessible")

678
679
680
681

@slow
@require_deepspeed
@require_torch_gpu
682
class TestDeepSpeedWithLauncher(TestCasePlus):
Patrick von Platen's avatar
Patrick von Platen committed
683
    """This class is for testing via an external script - can do multiple gpus"""
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

    # Tests to devise #
    #
    # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
    # the 2 gpus will generate prediction sequences that aren't of the same length - this is because
    # we had to code a special feature to sync the gpus when the predicted sequences aren't of the
    # same length. In general this will tested as a side-effect through a variety of other tests -
    # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
    # long as we have a few full tests running on zero3 + predict_with_generate this should be
    # mostly covered.
    #
    # but there are 5 variations on beam search in `generate`- with identical code branched with `if
    # synced_gpus`
    #
    # 2. most tests should probably be run on both: zero2 and zero3 configs
    #
700

701
    @require_torch_multi_gpu
702
703
704
    @parameterized.expand(stages)
    def test_basic_distributed(self, stage):
        self.run_and_check(stage=stage, distributed=True)
705

706
707
    def test_do_eval_no_train(self):
        # testing only zero3 since zero2 makes no sense with inference
708
        self.run_and_check(
709
            stage=ZERO3,
710
711
            eval_steps=1,
            distributed=False,
712
713
            do_train=False,
            do_eval=True,
714
        )
715

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
    @parameterized.expand(stages)
    def test_fp32_non_distributed(self, stage):
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
            model_name=T5_TINY,
            distributed=False,
            do_train=True,
            do_eval=True,
            quality_checks=False,
            fp16=False,
        )

    @require_torch_multi_gpu
    @parameterized.expand(stages)
    def test_fp32_distributed(self, stage):
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
            model_name=T5_TINY,
            distributed=True,
            do_train=True,
            do_eval=True,
            quality_checks=False,
            fp16=False,
        )

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
    @parameterized.expand(stages)
    def test_resume_train_not_from_ds_checkpoint(self, stage):
        # do normal training and then resume not from the deepspeed checkpoint but explicitly from
        # the saved model dir

        do_train = True
        do_eval = False
        kwargs = dict(stage=stage, eval_steps=1, distributed=True, do_train=do_train, do_eval=do_eval)

        # 1. normal training
        output_dir = self.run_and_check(**kwargs)

        # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
        # - i.e. the same path the model was saved to in step 1
        output_dir = self.run_trainer(**kwargs, model_name=output_dir)

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
    @require_torch_multi_gpu
    @parameterized.expand(["fp16", "fp32"])
    def test_inference(self, dtype):
        # this is just inference, so no optimizer should be loaded
        # it only works for z3 (makes no sense with z1-z2)
        fp16 = True if dtype == "fp16" else False
        self.run_and_check(
            stage=ZERO3,
            model_name=T5_TINY,
            distributed=True,
            do_train=False,
            do_eval=True,
            quality_checks=False,
            fp16=fp16,
        )

779
    def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True):
780
781
782
783

        if do_train:
            train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
            self.assertIn("train_samples_per_second", train_metrics)
784
785
            if quality_checks:
                self.assertGreater(train_metrics["train_samples_per_second"], 0.5)
786
787
788
789

        if do_eval:
            eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
            self.assertIn("eval_bleu", eval_metrics)
790
791
            if quality_checks:
                self.assertGreater(eval_metrics["eval_bleu"], 1)
792
793

    # XXX: need to do better validation beyond just that the run was successful
794
795
796
    def run_and_check(
        self,
        stage,
797
798
799
800
801
802
803
804
805
        model_name: str = T5_SMALL,
        eval_steps: int = 10,
        distributed: bool = True,
        do_train: bool = True,
        do_eval: bool = True,
        quality_checks: bool = True,
        fp16: bool = True,
        extra_args_str: str = None,
        remove_args_str: str = None,
806
807
808
    ):

        # we are doing quality testing so using a small real model
809
        output_dir = self.run_trainer(
810
            stage=stage,
811
            model_name=model_name,
812
            eval_steps=eval_steps,
813
            num_train_epochs=1,
814
815
            do_train=do_train,
            do_eval=do_eval,
816
            distributed=distributed,
817
            fp16=fp16,
818
819
820
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
821

822
        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks)
823
824

        return output_dir
825
826
827

    def run_trainer(
        self,
828
        stage: str,
829
        model_name: str,
830
831
832
833
        eval_steps: int = 10,
        num_train_epochs: int = 1,
        do_train: bool = False,
        do_eval: bool = True,
834
        distributed: bool = True,
835
        fp16: bool = True,
836
837
838
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
839
        max_len = 32
Sylvain Gugger's avatar
Sylvain Gugger committed
840
        data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
841
842
843
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
844
845
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
846
847
848
849
850
851
852
            --output_dir {output_dir}
            --overwrite_output_dir
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --warmup_steps 8
            --predict_with_generate
853
854
            --save_steps 0
            --eval_steps {eval_steps}
855
856
            --group_by_length
            --label_smoothing_factor 0.1
857
858
            --source_lang en
            --target_lang ro
859
            --report_to none
860
        """.split()
861
862
        args.extend(["--source_prefix", '"translate English to Romanian: "'])

863
864
865
        if fp16:
            args.extend(["--fp16"])

866
867
868
869
870
871
872
        actions = 0
        if do_train:
            actions += 1
            args.extend(
                f"""
            --do_train
            --num_train_epochs {str(num_train_epochs)}
873
            --max_train_samples 16
874
875
876
877
878
879
880
881
882
883
            --per_device_train_batch_size 2
            --learning_rate 3e-3
            """.split()
            )

        if do_eval:
            actions += 1
            args.extend(
                """
            --do_eval
884
            --max_eval_samples 16
885
886
887
888
889
            --per_device_eval_batch_size 2
            """.split()
            )

        assert actions > 0, "need at least do_train or do_eval for the test to run"
890
891
892
893

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

894
        # currently only works for bool args
895
896
897
898
        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

899
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
900
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
901
        launcher = get_launcher(distributed)
902
903

        cmd = launcher + script + args + ds_args
904
        # keep for quick debug
905
906
907
908
909
910
911
912
913
914
915
916
917
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir

    @parameterized.expand(stages)
    def test_clm(self, stage):
        # this test exercises model.resize_token_embeddings() which requires param gathering outside
        # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
918
            --model_name_or_path {GPT2_TINY}
919
920
921
922
923
924
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
925
926
927
928
            --max_train_samples 16
            --max_eval_samples 16
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
929
930
            --num_train_epochs 1
            --warmup_steps 8
931
932
            --block_size 64
            --fp16
933
            --report_to none
934
935
936
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
937
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
938
        launcher = get_launcher(distributed=True)
939
940
941
942

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
943
944
        execute_subprocess_async(cmd, env=self.get_env())

945
946
947
948
949
950
951
    def test_clm_from_config_zero3(self):
        # this test exercises AutoModel.from_config(config) - to ensure zero.Init is called

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_type gpt2
952
            --tokenizer_name {GPT2_TINY}
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --max_train_samples 4
            --per_device_train_batch_size 2
            --num_train_epochs 1
            --warmup_steps 8
            --block_size 8
            --fp16
            --report_to none
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split()
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
969
        launcher = get_launcher(distributed=True)
970
971
972
973
974
975

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        with CaptureStderr() as cs:
            execute_subprocess_async(cmd, env=self.get_env())
976
        self.assertIn("Detected DeepSpeed ZeRO-3", cs.err)
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

    @parameterized.expand(stages)
    def test_load_best_model(self, stage):
        # this test exercises --load_best_model_at_end - the key is being able to resume after some training

        data_dir = self.tests_dir / "fixtures/tests_samples/wmt_en_ro"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {T5_TINY}
            --tokenizer_name {T5_TINY}
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
            --output_dir {output_dir}
            --overwrite_output_dir
            --source_lang en
            --target_lang ro
            --do_train
            --max_train_samples 3
            --do_eval
            --max_eval_samples 1
            --logging_strategy steps
            --logging_steps 1
            --evaluation_strategy steps
            --eval_steps 1
            --save_strategy steps
            --save_steps 1
            --load_best_model_at_end
            --per_device_train_batch_size 1
            --per_device_eval_batch_size 1
            --num_train_epochs 1
            --fp16
            --report_to none
            """.split()
        args.extend(["--source_prefix", "translate English to Romanian: "])

1012
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
1013
1014
1015
1016
1017
1018
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
        launcher = get_launcher(distributed=False)

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
1019
        with CaptureStd() as cs:
1020
1021
            execute_subprocess_async(cmd, env=self.get_env())
        # enough to test it didn't fail
1022
        self.assertIn("DeepSpeed info", cs.out)