test_deepspeed.py 31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import dataclasses
16
import io
17
import json
18
19
import os
import unittest
20
from copy import deepcopy
21

22
from parameterized import parameterized
23
from transformers import TrainingArguments, is_torch_available
24
from transformers.file_utils import WEIGHTS_NAME
25
from transformers.integrations import is_deepspeed_available
26
from transformers.testing_utils import (
27
    CaptureLogger,
28
    ExtendSysPath,
29
30
31
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
32
    mockenv_context,
33
34
35
36
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)
37
38
39
from transformers.trainer_utils import set_seed


40
bindir = os.path.abspath(os.path.dirname(__file__))
41
42
43
44
with ExtendSysPath(f"{bindir}/.."):
    from test_trainer import TrainerIntegrationCommon  # noqa

    if is_torch_available():
45
        from test_trainer import RegressionModelConfig, RegressionPreTrainedModel, get_regression_trainer  # noqa
46
47


48
49
set_seed(42)
MBART_TINY = "sshleifer/tiny-mbart"
50
T5_SMALL = "t5-small"
51
T5_TINY = "patrickvonplaten/t5-tiny-random"
52
53


54
55
56
57
58
def load_json(path):
    with open(path) as f:
        return json.load(f)


59
60
61
62
63
64
65
66
67
68
69
# a candidate for testing_utils
def require_deepspeed(test_case):
    """
    Decorator marking a test that requires deepspeed
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)
    else:
        return test_case


70
71
72
73
if is_deepspeed_available():
    from deepspeed.utils import logger as deepspeed_logger  # noqa
    from transformers.integrations import deepspeed_config, is_deepspeed_zero3_enabled  # noqa

74
75
76
77
78
ZERO2 = "zero2"
ZERO3 = "zero3"
stages = [ZERO2, ZERO3]


79
@require_deepspeed
80
@require_torch_gpu
81
82
83
84
85
class TrainerIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """

    This class is for testing directly via get_regression_trainer

86
87
88
89
90
91
92
93
94
95
96
97
98
    It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
    which we can re-use here.

    Important: this class' setup can only work with a single gpu because it runs within the current
    pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.

    Note: if any of the tests of this class get run there will be at least one gpu occupied by them
    until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
    won't be released until this pytest worker exits.

    This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
    processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
    is not a bug.
99
    """
100
101
102

    def setUp(self):
        super().setUp()
103
104
105
106
107

        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

108
109
110
        self.dist_env_1_gpu = dict(
            MASTER_ADDR="localhost", MASTER_PORT="10999", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
        )
111

112
113
114
115
        self.ds_config_file = dict(
            zero2=f"{self.test_file_dir_str}/ds_config_zero2.json",
            zero3=f"{self.test_file_dir_str}/ds_config_zero3.json",
        )
116
117
118

        # use self.get_config_dict(stage) to use these to ensure the original is not modified
        with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
119
120
121
            config_zero2 = json.load(f)
            # by default use fp16
            config_zero2["fp16"]["enabled"] = True
122
        with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
123
124
125
            config_zero3 = json.load(f)
            # by default use fp16
            config_zero3["fp16"]["enabled"] = True
126
127
            # This setting slows things down, so don't enable it by default unless needed by a test.
            # It's in the file as a demo for users since we want everything to work out of the box even if slower.
128
129
130
131
132
133
134
135
136
            config_zero3["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = False
        self.ds_config_dict = dict(
            zero2=config_zero2,
            zero3=config_zero3,
        )

    def get_config_dict(self, stage):
        # As some tests modify the dict, always make a copy
        return deepcopy(self.ds_config_dict[stage])
137
138

    # --- These tests are enough to run on one of zero stages --- #
139
140
141
142
143
144
145
146
147
148

    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
149
150
151
152
153
154
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
            ds_config_zero2_dict["zero_optimization"]["cpu_offload"] = False
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(a=a, local_rank=0, deepspeed=ds_config_zero2_dict)
155
156
157
158
159
160
161
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
162
163
164
165
166
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            ds_config_zero2_dict["zero_optimization"]["cpu_offload"] = False
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(a=a, local_rank=0, deepspeed=ds_config_zero2_dict)
167
168
169
170
171
172
173
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
        # this combo is not possible at the moment
        with mockenv_context(**self.dist_env_1_gpu):
174
175
176
177
178
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
            ds_config_zero2_dict["zero_optimization"]["cpu_offload"] = False
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(local_rank=0, deepspeed=ds_config_zero2_dict)
179
180
            with self.assertRaises(Exception) as context:
                trainer.train()
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        self.assertTrue(
            "HF scheduler + DeepSpeed optimizer combination is not possible" in str(context.exception),
            f"got exception: {context.exception}",
        )

    def test_stage3_nvme_offload(self):
        with mockenv_context(**self.dist_env_1_gpu):
            # this actually doesn't have to be on NVMe, any storage will do since this test only
            # runs a simple check that we can use some directory as if it were NVMe
            nvme_path = self.get_auto_remove_tmp_dir()
            nvme_config = dict(device="nvme", nvme_path=nvme_path)
            ds_config_zero3_dict = self.get_config_dict(ZERO3)
            ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config
            ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config
            trainer = get_regression_trainer(local_rank=0, deepspeed=ds_config_zero3_dict)
            with CaptureLogger(deepspeed_logger) as cs:
                trainer.train()
            self.assertIn("DeepSpeed info", cs.out, "expected DeepSpeed logger output but got none")

    # --- These tests need to run on both zero stages --- #

    @parameterized.expand(stages)
    def test_hf_optimizer_with_offload(self, stage):
204
        # must not allow non-DS optimizer when using ZERO-offload
205
206
207
208
209
210
211
        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
        # force cpu offload
        if stage == "stage2":
            ds_config_dict["zero_optimization"]["cpu_offload"] = True
        elif stage == "stage3":
            ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
212
        with mockenv_context(**self.dist_env_1_gpu):
213
            trainer = get_regression_trainer(local_rank=0, deepspeed=ds_config_dict)
214
215
            with self.assertRaises(Exception) as context:
                trainer.train()
216
217
218
219
220
            self.assertIn(
                "ZeRO Offload can only work with DeepSpeed optimizers",
                str(context.exception),
                f"got exception: {context.exception}",
            )
221

222
223
224
225
226
227
228
    @parameterized.expand(stages)
    def test_fake_notebook_no_launcher(self, stage):
        # this setup emulates a notebook where a launcher needs to be emulated by hand

        # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
        # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
        # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
229
230
        # to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger.
        with mockenv_context(**self.dist_env_1_gpu):
231
            trainer = get_regression_trainer(local_rank=0, deepspeed=self.get_config_dict(stage))
232
            with CaptureLogger(deepspeed_logger) as cs:
233
                trainer.train()
234
            self.assertIn("DeepSpeed info", cs.out, "expected DeepSpeed logger output but got none")
235
236
237

    @parameterized.expand(stages)
    def test_early_get_last_lr(self, stage):
238
239
240
241
242
243
244
245
246
247
248
249
250
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
            trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=8,
251
                deepspeed=self.get_config_dict(stage),
252
253
254
255
                per_device_train_batch_size=8,
                logging_steps=1,
            )
            trainer.train()
256
257
258
            post_train_a = trainer.model.a.item()

            # XXX: for some reason the following check fails with zero3 - not a broken but a
259
260
261
262
263
            # different qualitative outcome - as if optimizer did run
            # oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere
            # print(trainer.model.a.item())
            # print(trainer.model.b.item())
            # need to investigate at some point
264
265
            if stage == ZERO3:
                return
266
267
268

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
269
            self.assertEqual(post_train_a, a)
270

271
272
    @parameterized.expand(stages)
    def test_gradient_accumulation(self, stage):
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=train_len,
294
                deepspeed=self.get_config_dict(stage),
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
                per_device_train_batch_size=8,
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=train_len,
311
                deepspeed=self.get_config_dict(stage),
312
313
314
315
316
317
318
319
320
                per_device_train_batch_size=4,
                gradient_accumulation_steps=2,
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

321
322
323
324
        # training with half the batch size but accumulation steps as 2 should give the same
        # weights, but sometimes get a slight difference still of 1e-6
        self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5)
        self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5)
325
326
327
328

        # see the note above how to get identical loss on a small bs
        self.assertAlmostEqual(no_grad_accum_loss, yes_grad_accum_loss, places=5)

329
    def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage):
330
331
332
        # adapted from TrainerIntegrationCommon.check_saved_checkpoints

        file_list = [WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

        if stage == ZERO2:
            ds_file_list = ["mp_rank_00_model_states.pt"]
        elif stage == ZERO3:
            ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
        else:
            raise ValueError(f"unknown stage {stage}")

        # XXX: this can be recoded and then removed once we require deepspeed>0.3.13
        from packaging import version

        import deepspeed

        if version.parse(deepspeed.__version__) > version.parse("0.3.13"):
            ds_file_list.append("zero_pp_rank_0_mp_rank_00_optim_states.pt")
        else:
            ds_file_list.append("zero_pp_rank_0_mp_rank_00optim_states.pt")
350
351
352

        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
353
            self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
354
355
356

            # common files
            for filename in file_list:
357
358
                path = os.path.join(checkpoint, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
359
360
361
362
363
364

            # ds files
            ds_path = os.path.join(checkpoint, f"global_step{step}")
            for filename in ds_file_list:
                # filename = os.path.join(path, filename)
                # print(filename)
365
366
                path = os.path.join(ds_path, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
367

368
369
    @parameterized.expand(stages)
    def test_save_checkpoints(self, stage):
370
371
        # adapted from  TrainerIntegrationTest.test_save_checkpoints

372
        freq = 5
373
        output_dir = self.get_auto_remove_tmp_dir()
374
        ds_config_dict = self.get_config_dict(stage)
375
        ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
376
377
        if stage == ZERO3:
            ds_config_dict["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = True
378
379
380
381
382
383
384
385
386
387
388

        # save checkpoints
        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                output_dir=output_dir,
                save_steps=freq,
                deepspeed=ds_config_dict,
            )
            trainer.train()

        total = int(self.n_epochs * 64 / self.batch_size)
389
        self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage)
390

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
    @parameterized.expand(stages)
    def test_can_resume_training_errors(self, stage):

        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = self.get_config_dict(stage)
            output_dir = self.get_auto_remove_tmp_dir()
            trainer = get_regression_trainer(output_dir=output_dir, deepspeed=ds_config_dict)

            # 1. fail to find any checkpoint - due a fresh output_dir
            with self.assertRaises(Exception) as context:
                trainer.train(resume_from_checkpoint=True)
            self.assertTrue(
                "No valid checkpoint found in output directory" in str(context.exception),
                f"got exception: {context.exception}",
            )
406

407
408
409
410
411
412
413
414
415
416
417
418
            # 2. fail to find a bogus checkpoint
            with self.assertRaises(Exception) as context:
                checkpoint = os.path.join(output_dir, "checkpoint-5")
                trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
            self.assertTrue(
                "Can't find a valid checkpoint at" in str(context.exception), f"got exception: {context.exception}"
            )

    @parameterized.expand(stages)
    def test_can_resume_training_normal(self, stage):
        # adapted from TrainerIntegrationTest.test_can_resume_training
        # test normal resume for each stage separately, error-handling is tested in a different test
419
        output_dir = self.get_auto_remove_tmp_dir()
420
        ds_config_dict = self.get_config_dict(stage)
421
        ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
422
423
424
        if stage == ZERO3:
            ds_config_dict["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = True

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
        kwargs = dict(output_dir=output_dir, train_len=128, save_steps=5, learning_rate=0.1, deepspeed=ds_config_dict)

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(output_dir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(output_dir, "checkpoint-15")

            # Reinitialize trainer and load model
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    def test_config_object(self):
        # test that we can switch from zero2 to zero3 in the same process for example
        # test is_zero, etc.
        output_dir = self.get_auto_remove_tmp_dir()
        kwargs = dict(output_dir=output_dir, train_len=8)

        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_zero3_dict = self.get_config_dict("zero3")
            ds_config_zero2_dict = self.get_config_dict("zero2")

            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test we can repeat that and with train this time
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            trainer.train()
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test zero3 is disabled
            trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs)
            self.assertFalse(is_deepspeed_zero3_enabled())

            # check config obj
            config = deepspeed_config()
            self.assertTrue(bool(config), "Deepspeed config should be accessible")

            del trainer
            # now weakref should gc the global and we shouldn't get anything here
            config = deepspeed_config()
            self.assertFalse(is_deepspeed_zero3_enabled())
            self.assertFalse(bool(config), "Deepspeed config should not be accessible")

490
491
492
493

@slow
@require_deepspeed
@require_torch_gpu
494
class TestDeepSpeedWithLauncher(TestCasePlus):
Patrick von Platen's avatar
Patrick von Platen committed
495
    """This class is for testing via an external script - can do multiple gpus"""
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

    # Tests to devise #
    #
    # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
    # the 2 gpus will generate prediction sequences that aren't of the same length - this is because
    # we had to code a special feature to sync the gpus when the predicted sequences aren't of the
    # same length. In general this will tested as a side-effect through a variety of other tests -
    # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
    # long as we have a few full tests running on zero3 + predict_with_generate this should be
    # mostly covered.
    #
    # but there are 5 variations on beam search in `generate`- with identical code branched with `if
    # synced_gpus`
    #
    # 2. most tests should probably be run on both: zero2 and zero3 configs
    #
512

513
    @require_torch_multi_gpu
514
515
516
    @parameterized.expand(stages)
    def test_basic_distributed(self, stage):
        self.run_and_check(stage=stage, distributed=True)
517

518
519
    @parameterized.expand(stages)
    def test_do_eval_no_train(self, stage):
520
        # we should not fail if train is skipped
521
522
        self.run_and_check(
            stage=stage,
523
524
            eval_steps=1,
            distributed=False,
525
526
            do_train=False,
            do_eval=True,
527
        )
528

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
    @parameterized.expand(stages)
    def test_fp32_non_distributed(self, stage):
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
            model_name=T5_TINY,
            distributed=False,
            do_train=True,
            do_eval=True,
            quality_checks=False,
            fp16=False,
        )

    @require_torch_multi_gpu
    @parameterized.expand(stages)
    def test_fp32_distributed(self, stage):
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
            model_name=T5_TINY,
            distributed=True,
            do_train=True,
            do_eval=True,
            quality_checks=False,
            fp16=False,
        )

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    @parameterized.expand(stages)
    def test_resume_train_not_from_ds_checkpoint(self, stage):
        # do normal training and then resume not from the deepspeed checkpoint but explicitly from
        # the saved model dir

        do_train = True
        do_eval = False
        kwargs = dict(stage=stage, eval_steps=1, distributed=True, do_train=do_train, do_eval=do_eval)

        # 1. normal training
        output_dir = self.run_and_check(**kwargs)

        # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
        # - i.e. the same path the model was saved to in step 1
        output_dir = self.run_trainer(**kwargs, model_name=output_dir)

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

576
    def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True):
577
578
579
580

        if do_train:
            train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
            self.assertIn("train_samples_per_second", train_metrics)
581
582
            if quality_checks:
                self.assertGreater(train_metrics["train_samples_per_second"], 0.5)
583
584
585
586

        if do_eval:
            eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
            self.assertIn("eval_bleu", eval_metrics)
587
588
            if quality_checks:
                self.assertGreater(eval_metrics["eval_bleu"], 1)
589
590

    # XXX: need to do better validation beyond just that the run was successful
591
592
593
    def run_and_check(
        self,
        stage,
594
595
596
597
598
599
600
601
602
        model_name: str = T5_SMALL,
        eval_steps: int = 10,
        distributed: bool = True,
        do_train: bool = True,
        do_eval: bool = True,
        quality_checks: bool = True,
        fp16: bool = True,
        extra_args_str: str = None,
        remove_args_str: str = None,
603
604
605
    ):

        # we are doing quality testing so using a small real model
606
        output_dir = self.run_trainer(
607
            stage=stage,
608
            model_name=model_name,
609
            eval_steps=eval_steps,
610
            num_train_epochs=1,
611
612
            do_train=do_train,
            do_eval=do_eval,
613
            distributed=distributed,
614
            fp16=fp16,
615
616
617
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
618

619
        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks)
620
621

        return output_dir
622
623
624

    def run_trainer(
        self,
625
        stage: str,
626
        model_name: str,
627
628
629
630
        eval_steps: int = 10,
        num_train_epochs: int = 1,
        do_train: bool = False,
        do_eval: bool = True,
631
        distributed: bool = True,
632
        fp16: bool = True,
633
634
635
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
636
        max_len = 32
Sylvain Gugger's avatar
Sylvain Gugger committed
637
        data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
638
639
640
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
641
642
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
643
644
645
646
647
648
649
650
            --output_dir {output_dir}
            --overwrite_output_dir
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --warmup_steps 8
            --predict_with_generate
            --logging_steps 0
651
652
            --save_steps 0
            --eval_steps {eval_steps}
653
654
655
            --group_by_length
            --label_smoothing_factor 0.1
            --adafactor
656
657
            --source_lang en
            --target_lang ro
658
            --report_to none
659
        """.split()
660
661
        args.extend(["--source_prefix", '"translate English to Romanian: "'])

662
663
664
        if fp16:
            args.extend(["--fp16"])

665
666
667
668
669
670
671
        actions = 0
        if do_train:
            actions += 1
            args.extend(
                f"""
            --do_train
            --num_train_epochs {str(num_train_epochs)}
672
            --max_train_samples 16
673
674
675
676
677
678
679
680
681
682
            --per_device_train_batch_size 2
            --learning_rate 3e-3
            """.split()
            )

        if do_eval:
            actions += 1
            args.extend(
                """
            --do_eval
683
            --max_eval_samples 16
684
685
686
687
688
            --per_device_eval_batch_size 2
            """.split()
            )

        assert actions > 0, "need at least do_train or do_eval for the test to run"
689
690
691
692

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

693
        # currently only works for bool args
694
695
696
697
        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

698
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
699
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
700
        launcher = self.get_launcher(distributed)
701
702

        cmd = launcher + script + args + ds_args
703
        # keep for quick debug
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir

    @parameterized.expand(stages)
    def test_clm(self, stage):
        # this test exercises model.resize_token_embeddings() which requires param gathering outside
        # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path sshleifer/tiny-gpt2
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
724
725
726
727
            --max_train_samples 16
            --max_eval_samples 16
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
728
729
            --num_train_epochs 1
            --warmup_steps 8
730
731
            --block_size 64
            --fp16
732
            --report_to none
733
734
735
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
736
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
737
        launcher = self.get_launcher(distributed=True)
738
739
740
741

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
742
743
744
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir
745
746
747
748
749
750
751
752

    def get_launcher(self, distributed=False):
        # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
        # - it won't be able to handle that
        # 2. for now testing with just 2 gpus max (since some quality tests may give different
        # results with mode gpus because we use very little data)
        num_gpus = min(2, get_gpu_count()) if distributed else 1
        return f"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()